Objective: We aimed to retrospectively evaluate the volume of new bone formed following sinus floor augmentation with simultaneous dental implant placement in severely atrophied residual alveolar ridges using a combination of platelet-rich fibrin and demineralized cortico-cancellous bone allograft in a geriatric population. Material and Methods: The clinical and radiological data of patients who underwent sinus floor augmentation using a combination of platelet-rich fibrin and demineralized cortico-cancellous bone allograft with simultaneous dental implant placement between 01 April 2013 and 01 August 2020 were retrieved from the archives. The main inclusion criteria for the study were age >60 years and a residual ridge height <2 mm. For each patient, cone-beam computed tomography (CBCT) scans were performed preoperatively, and 6 months after surgery. The volume of the maxillary sinus cavity preoperatively and postoperatively was measured using CBCT. The volume of the newly regenerated bone was calculated by subtracting the post-operative total sinus volume from the pre-operative total sinus volume. Residual and postoperative ridge heights were measured on the mid-coronal and mid-sagittal sections of preoperative and postoperative cone beam computed tomography images, respectively. Results: Fourteen patients with 19 sinus augmentations were included in the study. Thirty-two dental implants were placed with simultaneous sinus floor augmentation. All cases showed new bone formation on axial, coronal, and sagittal sections of postoperative CBCT scans. Conclusion: The combination of plateletrich fibrin and demineralized cortico-cancellous bone allograft used in sinus flor augmentation may promote the formation of healthy new bone that supports the simultaneous placement of dental implants in the elderly population with severely atrophic alveolar ridges.
Keywords: Allografts; cone-beam computed tomography; dental implants; geriatrics; sinus floor augmentation
Amaç: Bu çalışmada, geriatrik popülasyonda trombositten zengin fibrin ve demineralize kortikokansellöz kemik allogreftinin bir kombinasyonunu kullanarak ciddi derecede atrofik rezidüel alveolar kretlere eş zamanlı dental implant yerleştirme ile sinüs tabanı ögmentasyonunu takiben oluşan yeni kemik hacmini retrospektif olarak değerlendirmeyi amaçladık. Gereç ve Yöntemler: 01 Nisan 2013-01 Ağustos 2020 tarihleri arasında trombositten zengin fibrin ve demineralize kortikokansellöz kemik allogrefti ile sinüs ögmentasyonu ve eş zamanlı dental implant uygulaması yapılan hastaların klinik ve radyolojik verileri arşivlerden alınmıştır. Çalışmaya dâhil etme kriterleri 60 yaşından büyük hastalar ve 2 mm'den küçük rezidüel kemik yüksekliğidir. Her hasta için ameliyat öncesi ve ameliyattan 6 ay sonra konik ışınlı bilgisayarlı tomografi (KIBT) taraması yapıldı. Preoperatif ve postoperatif maksiller sinüs boşluğunun hacmi, KIBT kullanılarak ölçüldü. Yeni oluşan kemiğin hacmi, ameliyat öncesi toplam sinüs hacminden ameliyat sonrası toplam sinüs hacminin çıkarılmasıyla hesaplandı. Rezidüel ve postoperatif kret yükseklikleri preoperatif ve postoperatif KIBT görüntülerinin koronal ve sagittal kesitlerinde ölçüldü. Bulgular: Çalışmaya 19 sinüs ögmentasyonu olan 14 hasta dâhil edildi. Eş zamanlı sinüs tabanı ögmentasyonu ile 32 dental implant yerleştirildi. Tüm olgularda postoperatif KIBT görüntülerinin aksiyal, koronal ve sagittal kesitlerinde yeni kemik oluşumu görüldü. Sonuç: Sinüs tabanı ögmentasyonunda kullanılan trombositten zengin fibrin ve demineralize kortikokansellöz kemik allogreftinin kombinasyonu, ileri derecede atrofik alveolar kretleri olan geriatrik popülasyonda dental implantların aynı anda yerleştirilmesine olanak sağlayarak sağlıklı yeni kemik oluşumunu teşvik edebilir.
Anahtar Kelimeler: Allogreftler; konik ışınlı bilgisayarlı tomografi; dental implantlar; geriatri; sinüs tabanı ögmentayonu
- Atwood DA. Reduction of residual ridges: a major oral disease entity. J Prosthet Dent. 1971;26(3):266-79. [Crossref] [PubMed]
- Wagner F, Dvorak G, Nemec S, Pietschmann P, Figl M, Seemann R. A principal components analysis: how pneumatization and edentulism contribute to maxillary atrophy. Oral Dis. 2017;23(1):55-61. [Crossref] [PubMed]
- Tan WL, Wong TL, Wong MC, Lang NP. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23 Suppl 5:1-21. [Crossref] [PubMed]
- Kolerman R, Nissan J, Rahmanov M, Vered H, Cohen O, Tal H. Comparison between mineralized cancellous bone allograft and an alloplast material for sinus augmentation: A split mouth histomorphometric study. Clin Implant Dent Relat Res. 2017;19(5):812-20. [Crossref] [PubMed]
- Boëck-Neto RJ, Gabrielli M, Lia R, Marcantonio E, Shibli JA, Marcantonio E Jr. Histomorphometrical analysis of bone formed after maxillary sinus floor augmentation by grafting with a combination of autogenous bone and demineralized freeze-dried bone allograft or hydroxyapatite. J Periodontol. 2002;73(3):266-70. [Crossref] [PubMed]
- Landi L, Pretel RW Jr, Hakimi NM, Setayesh R. Maxillary sinus floor elevation using a combination of DFDBA and bovine-derived porous hydroxyapatite: a preliminary histologic and histomorphometric report. Int J Periodontics Restorative Dent. 2000;20(6):574-83. [PubMed]
- Tilaveridis I, Lazaridou M, Zouloumis L, Dimitrakopoulos I, Tilaveridis V, Tilaveridou S. The use of mineralized bone allograft as a single grafting material in maxillary sinus lifting with severely atrophied alveolar ridge (1-3 mm) and immediately inserted dental implants. A 3- up to 8-year retrospective study. Oral Maxillofac Surg. 2018;22(3):267-73. [Crossref] [PubMed]
- Ulm CW, Solar P, Gsellmann B, Matejka M, Watzek G. The edentulous maxillary alveolar process in the region of the maxillary sinus--a study of physical dimension. Int J Oral Maxillofac Surg. 1995;24(4):279-82. [Crossref] [PubMed]
- Liu R, Yan M, Chen S, Huang W, Wu D, Chen J. Effectiveness of platelet-rich fibrin as an adjunctive material to bone graft in maxillary sinus augmentation: a meta-analysis of randomized controlled trails. Biomed Res Int. 2019;2019:7267062. [Crossref] [PubMed] [PMC]
- Castro AB, Cortellini S, Temmerman A, Li X, Pinto N, Teughels W, et al. Characterization of the leukocyte- and platelet-rich fibrin block: release of growth factors, cellular content, and structure. Int J Oral Maxillofac Implants. 2019;34(4):855-64. [Crossref] [PubMed]
- Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part III: leucocyte activation: a new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e51-5. [Crossref] [PubMed]
- Pichotano EC, de Molon RS, de Souza RV, Austin RS, Marcantonio E, Zandim-Barcelos DL. Evaluation of L-PRF combined with deproteinized bovine bone mineral for early implant placement after maxillary sinus augmentation: a randomized clinical trial. Clin Implant Dent Relat Res. 2019;21(2):253-62. [Crossref] [PubMed]
- Lamster IB. Geriatric periodontology: how the need to care for the aging population can influence the future of the dental profession. Periodontol 2000. 2016;72(1):7-12. [Crossref] [PubMed]
- Lundgren S, Cricchio G, Hallman M, Jungner M, Rasmusson L, Sennerby L. Sinus floor elevation procedures to enable implant placement and integration: techniques, biological aspects and clinical outcomes. Periodontol 2000. 2017;73(1):103-20. [Crossref] [PubMed]
- Peleg M, Mazor Z, Chaushu G, Garg AK. Sinus floor augmentation with simultaneous implant placement in the severely atrophic maxilla. J Periodontol. 1998;69(12):1397-403. [Crossref] [PubMed]
- Mardinger O, Nissan J, Chaushu G. Sinus floor augmentation with simultaneous implant placement in the severely atrophic maxilla: technical problems and complications. J Periodontol. 2007;78(10):1872-7. [Crossref] [PubMed]
- Wolf M, Wurm A, Heinemann F, Gerber T, Reichert C, Jäger A, et al. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting. Int J Oral Maxillofac Implants. 2014;29(4):976-83. [Crossref] [PubMed]
- Diserens V, Mericske E, Mericske-Stern R. Radiographic analysis of the transcrestal sinus floor elevation: short-term observations. Clin Implant Dent Relat Res. 2005;7(2):70-8. [Crossref] [PubMed]
- Bornstein MM, Brügger OE, Janner SF, Kuchler U, Chappuis V, Jacobs R, et al. Indications and Frequency for the Use of Cone Beam Computed Tomography for Implant Treatment Planning in a Specialty Clinic. Int J Oral Maxillofac Implants. 2015;30(5):1076-83. [Crossref] [PubMed]
- Cosso MG, de Brito RB Jr, Piattelli A, Shibli JA, Zenóbio EG. Volumetric dimensional changes of autogenous bone and the mixture of hydroxyapatite and autogenous bone graft in humans maxillary sinus augmentation. A multislice tomographic study. Clin Oral Implants Res. 2014;25(11):1251-6. [Crossref] [PubMed]
- Gultekin BA, Borahan O, Sirali A, Karabuda ZC, Mijiritsky E. Three-dimensional assessment of volumetric changes in sinuses augmented with two different bone substitutes. Biomed Res Int. 2016;2016:4085079. [Crossref] [PubMed] [PMC]
- Broder J, Preston R. Imaging the head and brain. In: Broder J, eds. Diagnostic Imaging for the Emergency Physician. 1st ed. USA Saint Louis: W.B. Saunders; 2011. p.1-45. [Crossref]
- Everts PA, Overdevest EP, Jakimowicz JJ, Oosterbos CJ, Schönberger JP, Knape JT, et al. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review. Surg Endosc. 2007;21(11):2063-8. [Crossref] [PubMed]
- Bolukbasi N, Ersanlı S, Keklikoglu N, Basegmez C, Ozdemir T. Sinus augmentation with platelet-rich fibrin in combination with bovine bone graft versus bovine bone graft in combination with collagen membrane. J Oral Implantol. 2015;41(5):586-95. [Crossref] [PubMed]
- Miron RJ, Pikos MA. Sinus augmentation using platelet-rich fibrin with or without a bone graft: what is the consensus? Compend Contin Educ Dent. 2018;39(6):355-61; quiz 362. [PubMed]
.: Process List