Canlı vücudunda tamamı sentezlenemeyen vitaminler, fizyolojik fonksiyonlar için gerekli olup kendilerine özgü spesifik görevleri olan maddelerdir. İlaç-ilaç ve ilaç-gıda etkileşimleri, ilaçların istenmeyen etkilerinin ortaya çıkmasında büyük rol oynar. Farmakokinetik temelli ilaç etkileşimleri daha çok enzim ve taşıyıcı transmembran proteinler düzeyinde gözlenir. Metabolik reaksiyonların çoğu sitokrom P450 ailesi tarafından gerçekleştirilir. Enzim aktivitesinin, inhibisyonu veya indüksiyonu substrat ilacın konsantrasyonunu değiştirir. ATP-bağlayıcı kaset taşıyıcılarından, Pglikoprotein ve meme kanser direnç proteini toksik maddelerin ve ksenobiyotiklerin hücrelerden dışarı atılmasında ve ilaç-ilaç, ilaç-gıda etkileşimlerinde rol oynarlar. Çoğu ilaç etkileşimlerinde, sitokrom P450 ve P-glikoprotein birlikte rol oynar. Hem farmakokinetik ve hem de farmakodinamik etkileşimler, ilaçların farmakolojik etkinliğinde artış ve azalışa neden olabilir. Etkide artış ölüme yol açabilecek düzeyde bir etkileşim oluşturabilirken, etkide azalış ise tedavide başarısızlığa neden olabilir. İlaçlar arasındaki etkileşimin klinik önem arz edip etmeyeceği, etkileşime giren ilaçların terapötik indeks ve vücuttaki farmakokinetik davranış özelliklerinin bilinmesiyle ön görülebilir. Vitaminler, hem beşeri hem de veteriner hekimlikte en fazla suistimal edilen bileşikler arasındadır. İnsan ve hayvanların, besinlerle aldıkları vitaminlere ilave olarak kullanılan vitaminler sağlık açısından risk oluşturmakta ve ilaç etkileşimlerinde çoğu kez vitaminlerin etkisi göz ardı edilmektedir. Vitaminlerle ilaçlar arasındaki etkileşimleri belirlemeye yönelik daha çok deneysel ve klinik çalışmalara ihtiyaç vardır. Bu derlemede, yoğun kullanılan vitaminlerin ilaç etkileşimlerindeki önemi irdelenecektir.
Anahtar Kelimeler: Vitamin; ilaç; etkileşim
Vitamins, which cannot be fully synthesized in the living body, are necessary for physiological functions and are substances that have specific tasks. Drug-drug and drug-food interactions play a major role in the emergence of adverse effects of drugs. The pharmacokinetic based drug interactions are mostly observed at the level of enzyme and transporter transmembrane proteins. Most of the metabolic reactions are carried out by the cytochrome P450 family. Inhibition or induction of enzyme activity alters the concentration of the substrate drug. Pglycoprotein and breast cancer resistance protein, which are ATPbinding cassette transporters, play a role in the elimination of toxic substances and xenobiotics from cells, and in drug-drug and drug-food interactions. The cytochrome P450 enzymes and P-glycoprotein play a role together in many drug interactions. Both pharmacokinetic and pharmacodynamic interactions may cause an increase and decrease in the pharmacological efficacy of drugs. While an increase in effect can cause a level of interaction that can lead to death, a decrease in effect may be the source of treatment failure. Whether the interaction between drugs will be of clinical significance can be predicted by knowing the therapeutic index of the interacting drugs and their pharmacokinetic behavior in the body. Vitamins are the most abused substances in both human and veterinary medicine. The vitamins used in addition to the ones that humans and animals take with foods pose a health risk and the effect of vitamins in drug interactions is often overlooked. More experimental and clinical studies are needed to determine interactions between vitamins and drugs. In this manuscript, the importance of intensely used vitamins in drug interactions was discussed.
Keywords: Vitamin; drug; interaction
- Clarke SE, Jones BC. Human cytochromes p450 and their role in metabolism-based drug-drug interactions. In: Rodrigues AD, eds. Drug-Drug Interactions. Marcel Dekker: The United States of America; 2002. p.55. [Link]
- Çetin G, Traş B. İlaç davranışında P-glikoprotein'in rolü [Role of P-glycoprotein in Drug Disposition: Review]. Turkiye Klinikleri J Vet Sci. 2011;2(3):196-204. [Link]
- Jonker JW, Buitelaar M, Wagenaar E, Van Der Valk MA, Scheffer GL, Scheper RJ, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 2002;99(24):15649-54. [Crossref] [PubMed] [PMC]
- Özdemir Z, Traş B. Behaviours of drugs in the milk-a review. Atatürk University J Vet Sci. 2018;13(3):364-72. [Crossref]
- Tomlinson B, Hu M, Lee VW. In vivo assessment of herb-drug interactions: possible utility of a pharmacogenetic approach? Mol Nutr Food Res. 2008;52(7):799-809. [Crossref] [PubMed]
- LeCluyse EL. Pregnane X receptor: molecular basis for species differences in CYP3A induction by xenobiotics. Chem Biol Interact. 2001;134(3):283-9. [Crossref] [PubMed]
- Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Adv Drug Deliv Rev. 2003;55(1):53-81. [Crossref] [PubMed]
- Foster BC, Arnason JT, Briggs CJ. Natural health products and drug disposition. Annu Rev Pharmacol Toxicol. 2005;45:203-26. [Crossref] [PubMed]
- Radimer K, Bindewald B, Hughes J, Ervin B, Swanson C, Picciano MF. Dietary supplement use by US adults: data from the National Health and Nutrition Examination Survey, 1999-2000. Am J Epidemiol. 2004;160(4):339-49. [Crossref] [PubMed]
- Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38(7-8):802-32. [Crossref] [PubMed]
- O'Brien FE, O'Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacology. 2013;38(11):2209-19. [Crossref] [PubMed] [PMC]
- Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther. 2005;312(1):144-52. [Crossref] [PubMed]
- Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol. 2005;37(4):720-5. [Crossref] [PubMed]
- Chen Y, Derguini F, Buck J. Vitamin A in serum is a survival factor for fibroblasts. Proc Natl Acad Sci U S A. 1997;94(19):10205-8. [Crossref] [PubMed] [PMC]
- Tarapcsák S, Szalóki G, Telbisz Á, Gyöngy Z, Matúz K, Csősz É, et al. Interactions of retinoids with the ABC transporters p-glycoprotein and Breast Cancer Resistance Protein. Sci Rep. 2017;7(1):1-11. [Crossref] [PubMed] [PMC]
- Arnold SL, Amory JK, Walsh TJ, Isoherranen N. A sensitive and specific method for measurement of multiple retinoids in human serum with UHPLC-MS/MS. J Lipid Res. 2012;53(3):587-98. [Crossref] [PubMed] [PMC]
- Veal GJ, Errington J, Rowbotham SE, Illingworth NA, Malik G, Cole M, et al. Adaptive dosing approaches to the individualization of 13-cis-retinoic acid (isotretinoin) treatment for children with high-risk neuroblastoma. Clin Cancer Res. 2013;19(2):469-79. [Crossref] [PubMed] [PMC]
- Schmitt-Hoffmann AH, Roos B, Sauer J, Spickermann J, Maares J, Schoetzau A, Meyer I. Pharmacokinetic interactions between alitretinoin and ketoconazole or simvastatin or ciclosporin A. Clin Exp Dermatol. 2011;36 Suppl 2:24-8. [Crossref] [PubMed]
- Tang J, Fu Q, Wang Y, Racette K, Wang D, Liu F. Vitamin E reverses multidrug resistance in vitro and in vivo. Cancer Lett. 2013;336(1):149-57. [Crossref] [PubMed] [PMC]
- Mustacich DJ, Shields J, Horton RA, Brown MK, Reed DJ. Biliary secretion of alpha-tocopherol and the role of the mdr2 P-glycoprotein in rats and mice. Arch Biochem Biophys. 1998;350(2):183-92. [Crossref] [PubMed]
- Zhou C, Tabb MM, Sadatrafiei A, Grün F, Blumberg B. Tocotrienols activate the steroid and xenobiotic receptor, SXR, and selectively regulate expression of its target genes. Drug Metab Dispos. 2004;32(10):1075-82. [Crossref] [PubMed]
- Mustacich DJ, Leonard SW, Devereaux MW, Sokol RJ, Traber MG. α-Tocopherol regulation of hepatic cytochrome P450s and ABC transporters in rats. Free Radic Biol Med. 2006;41(7):1069-78. [Crossref] [PubMed]
- Mustacich DJ, Gohil K, Bruno RS, Yan M, Leonard SW, Ho E, et al. Alpha-tocopherol modulates genes involved in hepatic xenobiotic pathways in mice. J Nutr Biochem. 2009;20(6):469-76. [Crossref] [PubMed] [PMC]
- Traber MG, Labut EM, Leonard SW, Lebold KM. α-Tocopherol injections in rats up-regulate hepatic ABC transporters, but not cytochrome P450 enzymes. Free Radic Biol Med. 2011;51(11):2031-40. [Crossref] [PubMed] [PMC]
- Podszun MC, Jakobi M, Birringer M, Weiss J, Frank J. The long chain α-tocopherol metabolite α-13'-COOH and γ-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180. Mol Nutr Food Res. 2017;61(3). [Crossref] [PubMed]
- Parker RS, Sontag TJ, Swanson JE. Cytochrome P4503A-dependent metabolism of tocopherols and inhibition by sesamin. Biochem Biophys Res Commun. 2000;277(3):531-4. [Crossref] [PubMed]
- Abe C, Uchida T, Ohta M, Ichikawa T, Yamashita K, Ikeda S. Cytochrome P450-dependent metabolism of vitamin E isoforms is a critical determinant of their tissue concentrations in rats. Lipids. 2007;42(7):637-45. [Crossref] [PubMed]
- Birringer M, Drogan D, Brigelius-Flohe R. Tocopherols are metabolized in HepG2 cells by side chain omega-oxidation and consecutive beta-oxidation. Free Radic Biol Med. 2001;31(2):226-32. [Crossref] [PubMed]
- Kluth D, Landes N, Pfluger P, Müller-Schmehl K, Weiss K, Bumke-Vogt C, et al. Modulation of Cyp3a11 mRNA expression by alpha-tocopherol but not gamma-tocotrienol in mice. Free Radic Biol Med. 2005;38(4):507-14. [Crossref] [PubMed]
- Traber MG, Siddens LK, Leonard SW, Schock B, Gohil K, Krueger SK, et al. α-Tocopherol modulates Cyp3a expression, increases γ-CEHC production, and limits tissue γ-tocopherol accumulation in mice fed high γ-tocopherol diets. Free Radic Biol Med. 2005;38(6):773-85. [Crossref] [PubMed]
- Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol. 2004;66(3):413-9. [PubMed]
- Johnson CH, Bonzo JA, Cheng J, Krausz KW, Kang DW, Luecke H, et al. Cytochrome P450 regulation by α-tocopherol in Pxr-null and PXR-humanized mice. Drug Metab Dispos. 2013;41(2):406-13. [Crossref] [PubMed] [PMC]
- Traber MG. Vitamin E and K interactions--a 50-year-old problem. Nutr Rev. 2008;66(11):624-9. [Crossref] [PubMed]
- Wheldon GH, Bhatt A, Keller P, Hummler H. d,1-alpha-Tocopheryl acetate (vitamin E): a long term toxicity and carcinogenicity study in rats. Int J Vitam Nutr Res. 1983;53(3):287-96. [PubMed]
- Glynn RJ, Ridker PM, Goldhaber SZ. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: Report from the Women's Health Study. Journal of Vascular Surgery. 2008;47(2):479. [Crossref]
- Hanzawa F, Nomura S, Sakuma E, Uchida T, Ikeda S. Dietary sesame seed and its lignan, sesamin, increase tocopherol and phylloquinone concentrations in male rats. J Nutr. 2013;143(7):1067-73. [Crossref] [PubMed]
- Farley SM, Leonard SW, Labut EM, Raines HF, Card DJ, Harrington DJ, et al. Vitamin E decreases extra-hepatic menaquinone-4 concentrations in rats fed menadione or phylloquinone. Mol Nutr Food Res. 2012;56(6):912-22. Erratum in: Mol Nutr Food Res. 2013;57(6):1115. [Crossref] [PubMed]
- Farley SM, Leonard SW, Taylor AW, Birringer M, Edson KZ, Rettie AE, et al. ω-Hydroxylation of phylloquinone by CYP4F2 is not increased by α-tocopherol. Mol Nutr Food Res. 2013;57(10):1785-93. [Crossref] [PubMed] [PMC]
- Farley SM, Leonard SW, Stevens JF, Traber MG. Deuterium-labeled phylloquinone fed to α-tocopherol-injected rats demonstrates sensitivity of low phylloquinone-containing tissues to menaquinone-4 depletion. Mol Nutr Food Res. 2014;58(8):1610-9. [Crossref] [PubMed] [PMC]
- Hanzawa F, Sakuma E, Nomura S, Uchida T, Oda H, Ikeda S. Excess α-tocopherol decreases extrahepatic phylloquinone in phylloquinone-fed rats but not menaquinone-4 in menaquinone-4-fed rats. Mol Nutr Food Res. 2014;58(8):1601-9. [Crossref] [PubMed]
- Clarke MW, Burnett JR, Wu JH, Hodgson JM, Ledowski T, Puddey IB, et al. Vitamin E supplementation and hepatic drug metabolism in humans. J Cardiovasc Pharmacol. 2009;54(6):491-6. [Crossref] [PubMed]
- Bárány P, Stenvinkel P, Ottosson-Seeberger A, Alvestrand A, Morrow J, Roberts JJ 2nd, et al. Effect of 6 weeks of vitamin E administration on renal haemodynamic alterations following a single dose of neoral in healthy volunteers. Nephrol Dial Transplant. 2001;16(3):580-4. [Crossref] [PubMed]
- Wallert M, Schmölz L, Galli F, Birringer M, Lorkowski S. Regulatory metabolites of vitamin E and their putative relevance for atherogenesis. Redox Biol. 2014;2:495-503. [Crossref] [PubMed] [PMC]
- Diepeveen SH, Verhoeven GW, Van Der Palen J, Dikkeschei LD, Van Tits LJ, Kolsters G, et al. Effects of atorvastatin and vitamin E on lipoproteins and oxidative stress in dialysis patients: a randomised-controlled trial. J Intern Med. 2005;257(5):438-45. [Crossref] [PubMed]
- Podszun MC, Grebenstein N, Spruss A, Schlueter T, Kremoser C, Bergheim I, et al. Dietary α-tocopherol and atorvastatin reduce high-fat-induced lipid accumulation and down-regulate CD36 protein in the liver of guinea pigs. J Nutr Biochem. 2014;25(5):573-9. [Crossref] [PubMed]
- Brown BG, Zhao XQ, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med. 2001;345(22):1583-92. [Crossref] [PubMed]
- Tousoulis D, Antoniades C, Vassiliadou C, Toutouza M, Pitsavos C, Tentolouris C, et al. Effects of combined administration of low dose atorvastatin and vitamin E on inflammatory markers and endothelial function in patients with heart failure. Eur J Heart Fail. 2005;7(7):1126-32. [Crossref] [PubMed]
- Vasankari T, Ahotupa M, Viikari J, Nuotio I, Strandberg T, Vanhanen H, et al. Effect of 12-month statin therapy on antioxidant potential of LDL and serum antioxidant vitamin concentrations. Ann Med. 2004;36(8):618-22. [Crossref] [PubMed]
- Werba JP, Cavalca V, Veglia F, Massironi P, De Franceschi M, Zingaro L, et al. A new compound-specific pleiotropic effect of statins: modification of plasma gamma-tocopherol levels. Atherosclerosis. 2007;193(1):229-33. [Crossref] [PubMed]
- Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep. 2018;8(1):967. [Crossref] [PubMed] [PMC]
- Mohammadzadeh R, Baradaran B, Yousefi B, Valizadeh H, Zakeri-Milani P. Attenuation of intestinal efflux pump thru polymers and preservatives. J Res Pharm. 2019;23(4):632-41. [Crossref]
- Masuda S, Jones G. Promise of vitamin D analogues in the treatment of hyperproliferative conditions. Mol Cancer Ther. 2006;5(4):797-808. [Crossref] [PubMed]
- Chow EC, Maeng HJ, Liu S, Khan AA, Groothuis GM, Pang KS. 1alpha,25-Dihydroxyvitamin D(3) triggered vitamin D receptor and farnesoid X receptor-like effects in rat intestine and liver in vivo. Biopharm Drug Dispos. 2009;30(8):457-75. [Crossref] [PubMed]
- Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34(1-2):47-54. [Crossref] [PubMed]
- Morimoto K, Nakakariya M, Shirasaka Y, Kakinuma C, Fujita T, Tamai I, et al. Oseltamivir (Tamiflu) efflux transport at the blood-brain barrier via P-glycoprotein. Drug Metab Dispos. 2008;36(1):6-9. [Crossref] [PubMed]
- Chow EC, Durk MR, Cummins CL, Pang KS. 1Alpha,25-dihydroxyvitamin D3 up-regulates P-glycoprotein via the vitamin D receptor and not farnesoid X receptor in both fxr(-/-) and fxr(+/+) mice and increased renal and brain efflux of digoxin in mice in vivo. J Pharmacol Exp Ther. 2011;337(3):846-59. [Crossref] [PubMed]
- Fan J, Liu S, Du Y, Morrison J, Shipman R, Pang KS. Up-regulation of transporters and enzymes by the vitamin D receptor ligands, 1alpha,25-dihydroxyvitamin D3 and vitamin D analogs, in the Caco-2 cell monolayer. J Pharmacol Exp Ther. 2009;330(2):389-402. [Crossref] [PubMed]
- Margier M, Collet X, le May C, Desmarchelier C, André F, Lebrun C, et al. ABCB1 (P-glycoprotein) regulates vitamin D absorption and contributes to its transintestinal efflux. FASEB J. 2019;33(2):2084-2094. [Crossref] [PubMed]
- Doran A, Obach RS, Smith BJ, Hosea NA, Becker S, Callegari E, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33(1):165-74. [Crossref] [PubMed]
- Kota BP, Allen JD, Roufogalis BD. The effect of vitamin D3 and ketoconazole combination on VDR-mediated P-gp expression and function in human colon adenocarcinoma cells: implications in drug disposition and resistance. Basic Clin Pharmacol Toxicol. 2011;109(2):97-102. [Crossref] [PubMed]
- Khan AA, Chow ECY, van Loenen-Weemaes AMA, Porte RJ, Pang KS, Groothuis GM. Comparison of effects of VDR versus PXR, FXR and GR ligands on the regulation of CYP3A isozymes in rat and human intestine and liver. Eur J Pharm Sci. 2009;37(2):115-25. [Crossref] [PubMed]
- Chan LN. Drug-nutrient interactions. JPEN J Parenter Enteral Nutr. 2013;37(4):450-9. [Crossref] [PubMed]
- Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 2001;292(5519):1160-4. [Crossref] [PubMed]
- Montagnani M, Loré F, Di Cairano G, Gonnelli S, Ciuoli C, Montagnani A, et al. Effects of pravastatin treatment on vitamin D metabolites. Clin Ther. 1994;16(5):824-9. [PubMed]
- Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565-81. [Crossref] [PubMed]
- Robien K, Oppeneer SJ, Kelly JA, Hamilton-Reeves JM. Drug-vitamin D interactions: a systematic review of the literature. Nutr Clin Pract. 2013;28(2):194-208. [Crossref] [PubMed] [PMC]
- Zhou S, Chan E, Lim LY, Boelsterli UA, Li SC, Wang J, et al. Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4. Curr Drug Metab. 2004;5(5):415-42. [Crossref] [PubMed]
- Zhou SF, Xue CC, Yu XQ, Li C, Wang G. Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit. 2007;29(6):687-710. [Crossref] [PubMed]
- Cozzolino M, Vidal M, Arcidiacono MV, Tebas P, Yarasheski KE, Dusso AS. HIV-protease inhibitors impair vitamin D bioactivation to 1,25-dihydroxyvitamin D. AIDS. 2003;17(4):513-20. [Crossref] [PubMed]
- Wyatt CL, Jensen LS, Rowland GN 3rd. Effect of cimetidine on eggshell quality and plasma 25-hydroxycholecalciferol in laying hens. Poult Sci. 1990;69(11):1892-9. [Crossref] [PubMed]
- Odes HS, Fraser GM, Krugliak P, Lamprecht SA, Shany S. Effect of cimetidine on hepatic vitamin D metabolism in humans. Digestion. 1990;46(2):61-4. [Crossref] [PubMed]
- Gröber U. Interactions between drugs and micronutrients. Trace Elements & Electrolytes. 2010;27(1):1-9. [Crossref]
- Zannoni VG, Sato PH. Interaction with drugs and environmental chemicals. Effects of ascorbic acid on microsomal drug metabolism. Ann N Y Acad Sci. 1975;258:119-31. [Crossref] [PubMed]
- Dysken MW, Cumming RJ, Channon RA, Davis JM. Drug interaction between ascorbic acid and fluphenazine. JAMA. 1979;241(19): 2008. [Crossref] [PubMed]
- Golde DW. Vitamin C in cancer. Integr Cancer Ther. 2003;2(2):158-9. [Crossref] [PubMed]
- Grad JM, Cepero E, Boise LH. Mitochondria as targets for established and novel anti-cancer agents. Drug Resist Updat. 2001;4(2):85-91. [Crossref] [PubMed]
- Karasavvas N, Cárcamo JM, Stratis G, Golde DW. Vitamin C protects HL60 and U266 cells from arsenic toxicity. Blood. 2005;105(10): 4004-12. [Crossref] [PubMed] [PMC]
- Heaney ML, Gardner JR, Karasavvas N, Golde DW, Scheinberg DA, Smith EA, et al. Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs. Cancer Res. 2008;68(19):8031-8. [Crossref] [PubMed] [PMC]
- McColl KE. Effect of proton pump inhibitors on vitamins and iron. Am J Gastroenterol. 2009;104 Suppl 2:S5-9. [Crossref] [PubMed]
- Powers HJ. Riboflavin (vitamin B-2) and health. Am J Clin Nutr. 2003;77(6):1352-60. [Crossref] [PubMed]
- Huang SN, Swaan PW. Involvement of a receptor-mediated component in cellular translocation of riboflavin. J Pharmacol Exp Ther. 2000;294(1):117-25. [PubMed]
- van Herwaarden AE, Wagenaar E, Merino G, Jonker JW, Rosing H, Beijnen JH, et al. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007;27(4):1247-53. [Crossref] [PubMed] [PMC]
- Lichtenstein NS, Goldman ID. Riboflavin-methotrexate interactions. Photochemical reaction and competition for transport in the L1210 mouse leukemia cell. Biochem Pharmacol. 1970;19(4):1229-39. [Crossref] [PubMed]
- Vora B, Green EAE, Khuri N, Ballgren F, Sirota M, Giacomini KM. Drug-nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3). Am J Clin Nutr. 2020;111(1):110-121. [Crossref] [PubMed] [PMC]
- Liang X, Chien HC, Yee SW, Giacomini MM, Chen EC, Piao M, et al. Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3). Mol Pharm. 2015;12(12):4301-10. [Crossref] [PubMed] [PMC]
- Giacomini MM, Hao J, Liang X, Chandrasekhar J, Twelves J, Whitney JA, et al. Interaction of 2,4-diaminopyrimidine-containing drugs including fedratinib and trimethoprim with thiamine transporters. Drug Metab Dispos. 2017;45(1):76-85. [Crossref] [PubMed]
- Sagar M, Janczewska I, Ljungdahl A, Bertilsson L, Seensalu R. Effect of CYP2C19 polymorphism on serum levels of vitamin B12 in patients on long-term omeprazole treatment. Aliment Pharmacol Ther. 1999;13(4):453-8. [Crossref] [PubMed]
.: Process List