Amaç: Tüm ekzom dizileme [whole exome sequencing (WES)], etiyolojisinde genetik ve klinik heterojenite gösteren hastalıkların tanısında kullanılan etkili bir moleküler yöntemdir. Ayrıca bu yöntem ile hastanın genetik teste tabi tutulmasına neden olan birincil hastalık dışında, ikincil bulgu olarak adlandırılan, yaşamı tehdit eden veya önlenebilir hastalığa neden olan genlerdeki değişiklikler de tespit edilebilir. Bu çalışmanın amacı, WES uygulanan hastalarda ikincil bulguların sıklığını araştırmaktır. Gereç ve Yöntemler: Çalışma retrospektif bir çalışmadır, 113 erkek ve 103 kadın olmak üzere toplam 216 hastanın WES verileri ikincil bulgular açısından Amerikan Tıbbi Genetik ve Genomik Koleji [American College of Medical Genetics and Genomics (ACMG)] SF v3.2 tavsiyelerine göre araştırıldı. İlgili genlerdeki patojenik ve olası patojenik varyantlar çalışmaya dâhil edildi. Bulgular: Hastaların 10'unda (%4,6) ikincil bulgu tespit edilmiştir. Tespit edilen ikincil bulguların 4'ü (%40) kanser fenotipleriyle ilişkili genlerde iken 6'sı (%60) kardiyovasküler fenotipleriyle ilişkili genlerdeydi. Lynch sendromu, ailesel hiperkolesterolemi ve dilate kardiyomiyopati, hastalarda en sık tespit edilen ikincil bulgularla ilişkili hastalıklardı. Doğuştan gelen metabolizma hataları fenotipleriyle ilişkili genlerde ikincil bulgu tespit edilmedi. Sonuç: Bildiğimiz kadarıyla Türk toplumunda güncel ACMG tavsiyeleriyle WES verilerinden ikincil bulguları değerlendiren yayımlanmış bir çalışma yoktur. WES verilerinden morbidite ve mortaliteyi önlemeyi veya önemli ölçüde azaltmayı amaçlayan bilgileri çıkarmak, değerli ve hayat kurtarıcı bir çabadır. Bu çalışmanın sonuçları, ekzom dizilemede ikincil bulgular hakkında mevcut bilgilere ve Türk toplumunda gelecekteki çalışmalara katkı sağlayacaktır.
Anahtar Kelimeler: Tesadüfi bulgular; tüm ekzom sekanslama
Objective: Whole exome sequencing (WES) is an effective molecular method used in the diagnosis of diseases that show genetic and clinical heterogeneity in their etiology. Also with this method, in addition to the primary disease that causes the patient to undergo genetic testing, variants in genes that cause life-threatening or preventable diseases, called secondary findings, can also be detected. The aim of this study is to investigate the frequency of secondary findings in patients undergoing WES. Material and Methods: The study is a retrospective study and WES datas of 216 (113 male, 103 female) patients were investigated for secondary findings according to American College of Medical Genetics and Genomics (ACMG) SF v3.2 recommendations. Pathogenic and likely pathogenic variants in relevant genes were included in the study. Results: Secondary findings were detected in 10 of the (4.6%) patients. Of the secondary findings detected, 4 (40%) were in genes related to cancer phenotypes and 6 (60%) were in genes related to cardiovascular phenotypes. Lynch syndrome, familial hypercholesterolemia and dilated cardiomyopathy were the most frequently detected diseases in patients. No secondary findings were detected in genes related with inborn errors of metabolism phenotypes. Conclusion: To our knowledge, there is no published study evaluating secondary findings from WES data with current ACMG recommendations in the Turkish population. Extracting information aimed at preventing or significantly reducing morbidity and mortality from WES data is a valuable and life-saving endeavor. The results of this study will contribute to the current knowledge about secondary findings in exome sequencing and future studies in the Turkish population.
Keywords: Incidental findings; whole exome sequencing
- Delanne J, Nambot S, Chassagne A, Putois O, Pelissier A, Peyron C, et al. Secondary findings from whole-exome/genome sequencing evaluating stakeholder perspectives. a review of the literature. Eur J Med Genet. 2019;62(6):103529. [Crossref] [PubMed]
- Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al; American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013;15(7):565-74. Erratum in: Genet Med. 2017;19(5):606. [Crossref] [PubMed] [PMC]
- Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249-55. Erratum in: Genet Med. 2017;19(4):484. [Crossref] [PubMed]
- Miller DT, Lee K, Chung WK, Gordon AS, Herman GE, Klein TE, et al; ACMG Secondary Findings Working Group. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(8):1381-90. Erratum in: Genet Med. 2021. [Crossref] [PubMed]
- Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al; ACMG Secondary Findings Working Group. Electronic address: documents@acmg.net. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2022;24(7):1407-14. [Crossref] [PubMed]
- Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, et al; ACMG Secondary Findings Working Group. Electronic address: documents@acmg.net. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25(8):100866. [Crossref] [PubMed] [PMC]
- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. [Crossref] [PubMed] [PMC]
- Arslan Ateş E, Türkyilmaz A, Yıldırım Ö, Alavanda C, Polat H, Demir Ş, et al. Secondary findings in 622 Turkish clinical exome sequencing data. J Hum Genet. 2021;66(11):1113-9. [Crossref] [PubMed]
- Jain A, Gandhi S, Koshy R, Scaria V. Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar. Mol Genet Genomics. 2018;293(4):919-29. [Crossref] [PubMed]
- Jang MA, Lee SH, Kim N, Ki CS. Frequency and spectrum of actionable pathogenic secondary findings in 196 Korean exomes. Genet Med. 2015;17(12):1007-11. [Crossref] [PubMed]
- Aloraini T, Alsubaie L, Alasker S, Al Muitiri A, Alswaid A, Eyiad W, et al. The rate of secondary genomic findings in the Saudi population. Am J Med Genet A. 2022;188(1):83-8. [Crossref] [PubMed]
- Kuo CW, Hwu WL, Chien YH, Hsu C, Hung MZ, Lin IL, et al. Frequency and spectrum of actionable pathogenic secondary findings in Taiwanese exomes. Mol Genet Genomic Med. 2020;8(10):e1455. [Crossref] [PubMed] [PMC]
- eMERGE Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet Med. 2020;22(9):1470-7. [PubMed] [PMC]
- Faber J, Fonseca LM. How sample size influences research outcomes. Dental Press J Orthod. 2014;19(4):27-9. [Crossref] [PubMed] [PMC]
- Jalkh N, Mehawej C, Chouery E. Actionable exomic secondary findings in 280 Lebanese participants. Front Genet. 2020;11:208. [Crossref] [PubMed] [PMC]
- Chen W, Li W, Ma Y, Zhang Y, Han B, Liu X, et al. Secondary findings in 421 whole exome-sequenced Chinese children. Hum Genomics. 2018;12(1):42. [Crossref] [PubMed] [PMC]
- Haer-Wigman L, van der Schoot V, Feenstra I, Vulto-van Silfhout AT, Gilissen C, Brunner HG, et al. 1 in 38 individuals at risk of a dominant medically actionable disease. Eur J Hum Genet. 2019;27(2):325-30. [Crossref] [PubMed] [PMC]
- Skrahin A, Cheema HA, Hussain M, Rana NN, Rehman KU, Kumar R, et al. Secondary findings in a large Pakistani cohort tested with whole genome sequencing. Life Sci Alliance. 2023;6(3):e202201673. [Crossref] [PubMed] [PMC]
- Jamuar SS, Kuan JL, Brett M, Tiang Z, Tan WL, Lim JY, et al. Incidentalome from genomic sequencing: a barrier to personalized medicine? EBioMedicine. 2016;5:211-6. [Crossref] [PubMed] [PMC]
- Chetruengchai W, Shotelersuk V. Actionable secondary findings in the 73 ACMG-recommended genes in 1559 Thai exomes. J Hum Genet. 2022;67(3):137-42. [Crossref] [PubMed] [PMC]
- Olfson E, Cottrell CE, Davidson NO, Gurnett CA, Heusel JW, Stitziel NO, et al. Identification of medically actionable secondary findings in the 1000 genomes. PLoS One. 2015;10(9):e0135193. [Crossref] [PubMed] [PMC]
- Natarajan P, Gold NB, Bick AG, McLaughlin H, Kraft P, Rehm HL, et al. Aggregate penetrance of genomic variants for actionable disorders in European and African Americans. Sci Transl Med. 2016;8(364):364ra151. [Crossref] [PubMed] [PMC]
- Haraldsdottir S, Rafnar T, Frankel WL, Einarsdottir S, Sigurdsson A, Hampel H, et al. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2. Nat Commun. 2017;8:14755. [Crossref] [PubMed] [PMC]
- Reichart D, Magnussen C, Zeller T, Blankenberg S. Dilated cardiomyopathy: from epidemiologic to genetic phenotypes: a translational review of current literature. J Intern Med. 2019;286(4):362-72. [Crossref] [PubMed]
- Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al; European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society. Eur Heart J. 2013;34(45):3478-90a. Erratum in: Eur Heart J. 2020;41(47):4517. [Crossref] [PubMed] [PMC]
.: Process List