Parkinson is a slowly progressive brain disease of a neurodegenerative nature. It is manifested by a lack of dopamine in the brain. This neurological disease is usually seen over the age of 60. It has major symptoms such as resting tremor, bradykinesia, rigidity and posterior reflex disorder. In the studies conducted, the cause of neural degeneration is not fully explained, but it is agreed that hereditary predisposition, environmental toxins and aging play an important role and it is a multifactorial disease. Parkinson's treatment is lifelong and the dopamine hormone supplements used in treatment are aimed at reducing symptoms. A lots of herbal products contain active components which are known to possess antioxidant action. Hence, the potential role of herbal products in treating Parkinson's disease (PD) cannot be undermined. In our article, some plants used to reduce the symptoms of PD and their mechanisms of action are discussed. Among these plants are Acanthopanax senticosus, Anemopaegma mirandum, Bacopa monniera, Scutellaria baicalensis Georgi (Labiatae), Bushen Huoxue Granuls, Carthamus tinctorius L., Cassiae semen, Centella asiatica, Chrysanthemum morifolium Ramat, Chunghyuldan, Curcuma longa, Erythrina velutina Willd, Gastrodia elata Blume, Ginkgo biloba, Hypericum perforatum, Juglandis semen (Walnut), Lycium barbarum L. (Gojiberry fruit), Mucuna pruriens (Velvet bean), Paeoniae Alba Radix (White Peony Root), Peganum harmala L., Plumbago scandens, Pueraria lobata, Resveratrol, Thuja orientalis and Vicia faba (Fava Bean). With further studies, it is possible to prepare new drugs from these naturally sourced herbs.
Keywords: Aged; Parkinson's disease; medicinal plants; traditional medicine
Parkinson, nörodejeneratif nitelikte yavaş ilerleyen bir beyin hastalığıdır. Beyinde dopamin eksikliği ile kendini gösterir. Bu nörolojik hastalık genellikle 60 yaş üzerinde görülür. İstirahat tremoru, bradikinezi, rijidite ve posterior refleks bozukluğu gibi majör semptomları vardır. Yapılan çalışmalarda, nöral dejenerasyonun nedeni tam olarak açıklanamamakla birlikte kalıtsal yatkınlık, çevresel toksinler ve yaşlanmanın önemli rol oynadığı ve multifaktöriyel bir hastalık olduğu kabul edilmektedir. Parkinson tedavisi ömür boyu sürer ve tedavide kullanılan dopamin hormon takviyeleri ile semptomların azaltılması amaçlanır. Birçok bitki antioksidan etkiye sahip olduğu bilinen aktif bileşenler içermektedir. Bu nedenle bitkilerin Parkinson hastalığının tedavisindeki potansiyel rolü göz ardı edilmemelidir. Yazımızda, Parkinson hastalığının semptomlarını azaltmak için kullanılan bazı bitkiler ve etki mekanizmaları ele alınmıştır. Bu bitkiler arasında Acanthopanax senticosus, Anemopaegma mirandum, Bacopa monniera, Scutellaria baicalensis Georgi (Labiatae), Bushen Huoxue Granuls, Carthamus tinctorius L., Cassiae semen, Centella asiatica, Chrysanthemum morifolium Ramat, Chunghyuldan, Curcuma longa, Erythrina velutina Willd, Gastrodia elata Blume, Ginkgo biloba, Hypericum perforatum, Juglandis semen (Ceviz), Lycium barbarum L. (Gojiberry meyvesi), Mucuna pruriens (Kadife fasülye), Paeoniae Alba Radix (Beyaz Şakayık Kökü), Peganum harmala L., Plumbago scandens, Pueraria lobata, Resveratrol, Thuja orientalis and Vicia faba (Bakla) bulunmaktadır. Daha ileri çalışmalar ile bu doğal kaynaklı bitkilerden yeni ilaçlar hazırlamak mümkün olabilir.
Anahtar Kelimeler: Yaşlı; Parkinson hastalığı; şifalı bitkiler; geleneksel tıp
- de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006;5(6):525-35. [Crossref] [PubMed]
- Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci. 2002;14(2):223-36; discussion 222. [Crossref] [PubMed]
- Lill CM. Genetics of Parkinson's disease. Mol Cell Probes. 2016;30(6):386-96. Erratum in: Mol Cell Probes. 2020;52:101537. [Crossref] [PubMed]
- Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. J Neural Transm (Vienna). 2017;124(8):901-5. [Crossref] [PubMed]
- Tinelli M, Kanavos P, Grimaccia F. The Value of Early Diagnosis and Treatment in Parkinson's Disease (A Literature Review of the Potential Clinical and Socioeconomic Impact of Targeting Unmet Needs in Parkinson's Disease). 1st ed. England: LSE Consulting; 2016.
- Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, et al. Neuroinflammation, oxidative stress and the pathogenesis of Parkinson's disease. Clin Neurosci Res. 2006;6(5):261-81. [Crossref] [PubMed] [PMC]
- Fearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain. 1991;114 ( Pt 5):2283-301. [Crossref] [PubMed]
- Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015-22. [Crossref] [PubMed]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-858. Erratum in: Lancet. 2019;393(10190):e44. [PubMed] [PMC]
- Rogers G, Davies D, Pink J, Cooper P. Parkinson's disease: summary of updated NICE guidance. BMJ. 2017;358:j1951. Erratum in: BMJ. 2019;364:l961. [Crossref] [PubMed]
- Jenner P. Treatment of the later stages of Parkinson's disease - pharmacological approaches now and in the future. Transl Neurodegener. 2015;4:3. [Crossref] [PubMed] [PMC]
- National Center for Complementary and Integrative Health [Internet]. Complementary, alternative, or integrative health: What's in a name? 2021. (Cited: January 28, 2022). Available from: [Link]
- Finseth TA, Hedeman JL, Brown RP 2nd, Johnson KI, Binder MS, Kluger BM. Self-reported efficacy of cannabis and other complementary medicine modalities by Parkinson's disease patients in colorado. Evid Based Complement Alternat Med. 2015;2015:874849. [Crossref] [PubMed] [PMC]
- Zheng GQ. Therapeutic history of Parkinson's disease in Chinese medical treatises. J Altern Complement Med. 2009;15(11):1223-30. [Crossref] [PubMed]
- Yin R, Xue J, Tan Y, Fang C, Hu C, Yang Q, et al. The positive role and mechanism of herbal medicine in Parkinson's disease. Oxid Med Cell Longev. 2021;2021:9923331. [Crossref] [PubMed] [PMC]
- Zhang G, Xiong N, Zhang Z, Liu L, Huang J, Yang J, et al. Effectiveness of traditional Chinese medicine as an adjunct therapy for Parkinson's disease: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0118498. [Crossref] [PubMed] [PMC]
- Amro MS, Teoh SL, Norzana AG, Srijit D. The potential role of herbal products in the treatment of Parkinson's disease. Clin Ter. 2018;169(1):e23-e33. [PubMed]
- Rajendran PR, Thompson RE, Reich SG. The use of alternative therapies by patients with Parkinson's disease. Neurology. 2001;57(5):790-4. [Crossref] [PubMed]
- Ovallath S, Deepa P. The history of parkinsonism: descriptions in ancient Indian medical literature. Mov Disord. 2013;28(5):566-8. [Crossref] [PubMed]
- Fujikawa T, Miguchi S, Kanada N, Nakai N, Ogata M, Suzuki I, et al. Acanthopanax senticosus Harms as a prophylactic for MPTP-induced Parkinson's disease in rats. J Ethnopharmacol. 2005;97(2):375-81. [Crossref] [PubMed]
- Valverde G De Andrade D, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, et al. Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res. 2008;1198:188-96. [Crossref] [PubMed]
- Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology. 2006;27(4):451-7. [Crossref] [PubMed]
- Chaudhari KS, Tiwari NR, Tiwari RR, Sharma RS. Neurocognitive effect of nootropic drug Brahmi (Bacopa monnieri) in Alzheimer's disease. Ann Neurosci. 2017;24(2):111-22. [Crossref] [PubMed] [PMC]
- Zhao T, Tang H, Xie L, Zheng Y, Ma Z, Sun Q, et al. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J Pharm Pharmacol. 2019;71(9):1353-69. [Crossref] [PubMed]
- Jeong K, Shin YC, Park S, Park JS, Kim N, Um JY. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice. J Biomed Sci. 2011;18:14. [Crossref] [PubMed] [PMC]
- Li XX, He GR, Mu X, Xu B, Tian S, Yu X, et al. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol. 2012;674(2-3):227-33. [Crossref] [PubMed]
- Mu X, He GR, Yuan X, Li XX, Du GH. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav. 2011;98(2):286-91. [Crossref] [PubMed]
- Ding J, Tan X, Song K, Ma W, Xiao J, Song Y, et al. Bushen huoxue recipe alleviates implantation loss in mice by enhancing estrogen-progesterone signals and promoting decidual angiogenesis through FGF2 during early pregnancy. Front Pharmacol. 2018;9:437. [Crossref] [PubMed] [PMC]
- Yang MH, Li M, Dou YQ, Liu Y, Luo XD, Chen JZ, et al. [Effects of Bushen Huoxue Granule on motor function in patients with Parkinson's disease: a multicenter, randomized, double-blind and placebo-controlled trial]. Zhong Xi Yi Jie He Xue Bao. 2010;8(3):231-7. Chinese. [Crossref] [PubMed]
- Li M, Yang MH, Liu Y. [Effects of Chinese herbal medicine Bushen Huoxue Granule on quality of life of patients with Parkinson disease: a randomized, double-blinded and placebo-controlled trial]. Zhong Xi Yi Jie He Xue Bao. 2012;10(3):310-7. Chinese. [Crossref] [PubMed]
- Ablat N, Lv D, Ren R, Xiaokaiti Y, Ma X, Zhao X, et al. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson's disease. Molecules. 2016;21(9):1107. [Crossref] [PubMed] [PMC]
- Ju MS, Kim HG, Choi JG, Ryu JH, Hur J, Kim YJ, et al. Cassiae semen, a seed of Cassia obtusifolia, has neuroprotective effects in Parkinson's disease models. Food Chem Toxicol. 2010;48(8-9):2037-44. [Crossref] [PubMed]
- Frawley D, Ranade S. Ayurveda, Nature's Medicine. 2nd ed. Wisconsin: Lotus Press; 2012.
- Haleagrahara N, Ponnusamy K. Neuroprotective effect of Centella asiatica extract (CAE) on experimentally induced parkinsonism in aged Sprague-Dawley rats. J Toxicol Sci. 2010;35(1):41-7. [Crossref] [PubMed]
- Orhan IE. Centella asiatica (L.) urban: from traditional medicine to modern medicine with neuroprotective potential. Evid Based Complement Alternat Med. 2012;2012:946259. [Crossref] [PubMed] [PMC]
- Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: a review. Front Pharmacol. 2020;11:568032. [Crossref] [PubMed] [PMC]
- Kim IS, Koppula S, Park PJ, Kim EH, Kim CG, Choi WS, et al. Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. J Ethnopharmacol. 2009;126(3):447-54. [Crossref] [PubMed]
- Jung WS, Kwon S, Cho SY, Park SU, Moon SK, Park JM, et al. The effects of chunghyul-dan (A Korean medicine herbal complex) on cardiovascular and cerebrovascular diseases: a narrative review. Evid Based Complement Alternat Med. 2016;2016:2601740. [Crossref] [PubMed] [PMC]
- Ko CN, Park IS, Park SU, Jung WS, Moon SK, Park JM, et al. Neuroprotective effect of Chunghyuldan (Qing Xue Dan) on hypoxia-reoxygenation induced damage of neuroblastoma 2a cell lines. Chin J Integr Med. 2013;19(12):940-4. [Crossref] [PubMed]
- Tung BT, Nham DT, Hai NT, Thu DK. Curcuma longa, the polyphenolic Curcumin compound and pharmacological effects on liver. In: Watson R, Preedy VR, eds. Dietary Interventions in Liver Disease Foods, Nutrients, and Dietary Supplements. 1st ed. London, United Kingdom: Academic Press; 2019. p.125-34. [Crossref]
- Labban L. Medicinal and pharmacological properties of Turmeric (Curcuma longa): A review. J Pharm Biomed Sci. 2014;5(1):17-23. [Link]
- Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283-99. [Crossref] [PubMed] [PMC]
- Silva AH, Fonseca FN, Pimenta AT, Lima MS, Silveira ER, Viana GS, et al. Pharmacognostical analysis and protective effect of standardized extract and rizonic acid from erythrina velutina against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Pharmacogn Mag. 2016;12(48):307-12. [PubMed] [PMC]
- Jang JH, Son Y, Kang SS, Bae CS, Kim JC, Kim SH, et al. Neuropharmacological potential of gastrodia elata blume and its components. Evid Based Complement Alternat Med. 2015;2015:309261. [Crossref] [PubMed] [PMC]
- Liu Y, Gao J, Peng M, Meng H, Ma H, Cai P, et al. A review on central nervous system effects of gastrodin. Front Pharmacol. 2018;9:24. [Crossref] [PubMed] [PMC]
- Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules. 2011;16(7):5349-61. [Crossref] [PubMed] [PMC]
- Zhang J, Sun HM, Bai LM, Xu H, Wu HX, Cui L. [Effect of Ginkgo biloba Pingchan Recipe on neuronal nitric oxide synthase mRNA expression in the brain of mouse models of Parkinson disease]. Nan Fang Yi Ke Da Xue Xue Bao. 2009;29(8):1735-40. [PubMed]
- Ahmad M, Saleem S, Ahmad AS, Yousuf S, Ansari MA, Khan MB, et al. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem. 2005;93(1):94-104. [Crossref] [PubMed]
- Oztürk Y, Aydin S, Beis R, Başer KH, Berberoglu H. Effects of Hypericum perforatum L. and Hypericum calycinum L. extracts on the central nervous system in mice. Phytomedicine. 1996;3(2):139-46. [Crossref] [PubMed]
- Mohanasundari M, Srinivasan MS, Sethupathy S, Sabesan M. Enhanced neuroprotective effect by combination of bromocriptine and Hypericum perforatum extract against MPTP-induced neurotoxicity in mice. J Neurol Sci. 2006;249(2):140-4. [Crossref] [PubMed]
- Sánchez-Reus MI, Gómez del Rio MA, Iglesias I, Elorza M, Slowing K, Benedí J. Standardized Hypericum perforatum reduces oxidative stress and increases gene expression of antioxidant enzymes on rotenone-exposed rats. Neuropharmacology. 2007;52(2):606-16. [Crossref] [PubMed]
- Oliveira AI, Pinho C, Sarmento B, Dias AC. Neuroprotective activity of hypericum perforatum and its major components. Front Plant Sci. 2016;7:1004. [Crossref] [PubMed] [PMC]
- Choi JG, Park G, Kim HG, Oh DS, Kim H, Oh MS. In vitro and in vivo neuroprotective effects of walnut (juglandis semen) in models of Parkinson's disease. Int J Mol Sci. 2016;17(1):108. [Crossref] [PubMed] [PMC]
- Zhang Z, Liu X, Wu T, Liu J, Zhang X, Yang X, et al. Selective suppression of cervical cancer Hela cells by 2-O-β-D-glucopyranosyl-L-ascorbic acid isolated from the fruit of Lycium barbarum L. Cell Biol Toxicol. 2011;27(2):107-21. [Crossref] [PubMed]
- Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci. 2016;1378(1):17-24. [Crossref] [PubMed] [PMC]
- Cao S, Du J, Hei Q. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Exp Ther Med. 2017;14(5):4919-27. [Crossref] [PubMed] [PMC]
- Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, et al. Mucuna pruriens in Parkinson's disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry. 2004;75(12):1672-7. [Crossref] [PubMed] [PMC]
- Pulikkalpura H, Kurup R, Mathew PJ, Baby S. Levodopa in Mucuna pruriens and its degradation. Sci Rep. 2015;5:11078. [Crossref] [PubMed] [PMC]
- Manyam BV, Dhanasekaran M, Hare TA. Neuroprotective effects of the antiparkinson drug Mucuna pruriens. Phytother Res. 2004;18(9):706-12. [Crossref] [PubMed]
- Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. The magic velvet bean of mucuna pruriens. J Tradit Complement Med. 2012;2(4):331-9. [Crossref] [PubMed] [PMC]
- Rakel D. Parkinson's disease. Integrative Medicine. 4th ed. Philadelpia: Elsevier; 2018. p.143-51.
- Liu DZ, Xie KQ, Ji XQ, Ye Y, Jiang CL, Zhu XZ. Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br J Pharmacol. 2005;146(4):604-11. [Crossref] [PubMed] [PMC]
- Liu DZ, Zhu J, Jin DZ, Zhang LM, Ji XQ, Ye Y, et al. Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson's disease. J Ethnopharmacol. 2007;112(2):327-32. [Crossref] [PubMed]
- Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of Parkinsonism. J Neurosci Res. 2005;81(6):865-73. [Crossref] [PubMed]
- Rezaei M, Nasri S, Roughani M, Niknami Z, Ziai SA. Peganum Harmala L. Extract Reduces Oxidative Stress and Improves Symptoms in 6-Hydroxydopamine-Induced Parkinson's Disease in Rats. Iran J Pharm Res. 2016;15(1):275-81. [PubMed] [PMC]
- Morais LC, Quintans-Júnior LJ, Franco CI, Almeida JR, Almeida RN. Antiparkinsonian-like effects of Plumbago scandens on tremorine-induced tremors methodology. Pharmacol Biochem Behav. 2004;79(4):745-9. [Crossref] [PubMed]
- Zhou YX, Zhang H, Peng C. Puerarin: a review of pharmacological effects. Phytother Res. 2014;28(7):961-75. [Crossref] [PubMed]
- Xiao B, Sun Z, Cao F, Wang L, Liao Y, Liu X, et al. Brain pharmacokinetics and the pharmacological effects on striatal neurotransmitter levels of Pueraria lobata isoflavonoids in rat. Front Pharmacol. 2017;8:599. [Crossref] [PubMed] [PMC]
- Zhang X, Xiong J, Liu S, Wang L, Huang J, Liu L, et al. Puerarin protects dopaminergic neurons in Parkinson's disease models. Neuroscience. 2014;280:88-98. [Crossref] [PubMed]
- Frémont L. Biological effects of resveratrol. Life Sci. 2000;66(8):663-73. [Crossref] [PubMed]
- Bhat KPL, Kosmeder JW 2nd, Pezzuto JM. Biological effects of resveratrol. Antioxid Redox Signal. 2001;3(6):1041-64. [Crossref] [PubMed]
- Lu KT, Ko MC, Chen BY, Huang JC, Hsieh CW, Lee MC, et al. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem. 2008;56(16):6910-3. [Crossref] [PubMed]
- Ju MS, Lee P, Kim HG, Lee KY, Hur J, Cho SH, et al. Protective effects of standardized Thuja orientalis leaves against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Toxicol In Vitro. 2010;24(3):759-65. [Crossref] [PubMed]
- Kempster PA, Bogetic Z, Secombei JW, Martin HD, Balazs ND, Wahlqvist ML. Motor effects of broad beans (Vicia faba) in Parkinson's disease: single dose studies. Asia Pac J Clin Nutr. 1993;2(2):85-9. [PubMed]
- Rijntjes M. Knowing your beans in Parkinson's disease: a critical assessment of current knowledge about different beans and their compounds in the treatment of Parkinson's disease and in animal models. Parkinsons Dis. 2019;2019:1349509. [Crossref] [PubMed] [PMC]
.: Process List