Objective: This study aimed to evaluate the relationship between the shapes of lung lesions on computed tomography (CT) scans of patients with coronavirus disease-2019 (COVID-19) pneumonia and course of the disease based on laboratory data. Material and Methods: A total of 500 patients with COVID-19 pneumonia were included in the study, and were divided into four groups based on the shapes of the lung lesions in their CT scans: Group A (round-shaped), Group B (patchy-shaped), Group C (halo sign/reverse halo), and Group D (diffuse). Laboratory data, including lymphocyte, C-reactive protein, lactate dehydrogenase, ferritin and D-dimer tests, were collected for all patients, and the 4 groups were compared with the laboratory results to evaluate their association with disease severity. Results: The results showed that patchy-shaped lesions were the most common (44.6%), whereas halo sign/reverse halo sign were rare, with only 15 patients (3%) in Group C. Patients with round lesions were found to have milder disease severity, with stable laboratory results. Conversely, patients in Group B with patchy shape exhibited less favorable disease severity compared to Group A. Those with halo/reversed halo signs had minimal lung involvement but higher inflammatory markers. Patients with diffuse spread showed the highest disease severity and poorest laboratory findings. Conclusion: Describing and evaluating lung lesion shapes on CT scans of COVID-19 pneumonia patients can guide clinicians in managing the disease and hospitalization decisions. Our findings suggest that in predicting the course of COVID-19 pneumonia, the shapes of lung lesions on CT scans may be a more critical determinant than their extent.
Keywords: COVID-19; viral pneumonia; multislice computed tomography; disease severity; biomarkers
Amaç: Bu çalışma, koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID-19)] pnömonili hastaların toraks bilgisayarlı tomografi (BT) taramalarındaki akciğer lezyonlarının morfolojik şekilleri ile laboratuvar verilerine dayalı hastalığın seyrini değerlendirmeyi amaçlamıştır. Gereç ve Yöntemler: Toplam 500 COVID-19 pnömonili hasta çalışmaya dâhil edildi ve toraks BT taramalarındaki akciğer lezyonlarının şekline göre 4 gruba ayrıldı: A grubu (yuvarlak şekilli), B grubu (yamasal şekilli), C grubu (halo/ters halo işareti), ve D grubu (diffüz yayılma). Tüm hastaların lenfosit sayıları, C-reaktif protein, laktat dehidrogenaz, ferritin ve D-dimer testleri dâhil olmak üzere laboratuvar verileri toplandı ve 4 grup, hastalık şiddeti üzerine etkisi değerlendirilmek amacıyla laboratuvar test sonuçları ile karşılaştırıldı. Bulgular: Sonuçlar, yamasal şekilli lezyonların en yaygın olduğunu (%44,6), halo /ters halo işaretli lezyonların ise nadir olduğunu, sadece C grubunda 15 hastada (%3) bulunduğunu gösterdi. Yuvarlak lezyonlara sahip hastaların (A Grubu), daha hafif hastalık şiddetine ve stabil laboratuvar sonuçlarına sahip olduğu bulundu. Buna karşılık, yamalı şekilli olan B grubundaki hastalar, A grubuna göre daha az olumlu hastalık şiddeti göstermiştir. Halo veya ters halo işareti olanlar minimal akciğer tutulumuna sahipti ancak daha yüksek inflamatuar belirteçlere sahipti. Lezyonların yayılma gösterdiği D grubundaki hastalar en yüksek hastalık şiddeti ve en kötü laboratuvar bulgularına sahipti. Sonuç: COVID-19 pnömonisi olan hastalar hastaneye başvurduğunda alınan toraks BT taramalarında gözlenen akciğer lezyonlarının morfolojik şekillerini tanımlamak ve bunların hastalık şiddeti üzerindeki etkisini değerlendirmek, klinisyenlere hastalığın yönetimi ve hastaneye yatış kararlarında değerli bir rehberlik sağlayabilir. Bulgularımız, COVID-19 pnömonisinin seyrini tahmin etmede, toraks BT taramalarındaki akciğer lezyonlarının şekillerinin, yayılım ve dağılımlarından daha kritik bir belirleyici olabileceğini önermektedir.
Anahtar Kelimeler: COVID 19; viral pnömoni; çok kesitli bilgisayarlı tomografi; hastalık şiddeti; biyobelirteçler
- World Health Organization. Coronavirus. Accessed June 6, 2020. [Link]
- Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. Erratum in: JAMA. 2021;325(11):1113. [Crossref] [PubMed] [PMC]
- Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. Erratum in: Euro Surveill. 2020;25(14): Erratum in: Euro Surveill. 2020;25(30): Erratum in: Euro Surveill. 2021;26(5) [Crossref] [PubMed] [PMC]
- Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020;9(1):747-56. [Crossref] [PubMed] [PMC]
- Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology. 2020;296(2):E115-E7. [Crossref] [PubMed] [PMC]
- Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7. [Crossref] [PubMed] [PMC]
- Gallo Marin B, Aghagoli G, Lavine K, Yang L, Siff EJ, Chiang SS, et al. Predictors of COVID-19 severity: A literature review. Rev Med Virol. 2021;31(1):1-10. [Crossref] [PubMed] [PMC]
- Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med. 2020;58(7):1021-8. [Crossref] [PubMed]
- Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364-74. [Crossref] [PubMed] [PMC]
- Poggiali E, Zaino D, Immovilli P, Rovero L, Losi G, Dacrema A, et al. Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in CoVID-19 patients. Clin Chim Acta. 2020;509:135-8. [Crossref] [PubMed] [PMC]
- Han Y, Zhang H, Mu S, Wei W, Jin C, Tong C, et al. Lactate dehydrogenase, an independent risk factor of severe COVID-19 patients: a retrospective and observational study. Aging (Albany NY). 2020;12(12):11245-58. [Crossref] [PubMed] [PMC]
- Chen W, Zheng KI, Liu S, Yan Z, Xu C, Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann Clin Microbiol Antimicrob. 2020;19(1):18. [Crossref] [PubMed] [PMC]
- Velavan TP, Meyer CG. Mild versus severe COVID-19: Laboratory markers. Int J Infect Dis. 2020;95:304-7. [Crossref] [PubMed] [PMC]
- Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. [Crossref] [PubMed] [PMC]
- Tian W, Jiang W, Yao J, Nicholson CJ, Li RH, Sigurslid HH, et al. Predictors of mortality in hospitalized COVID-19 patients: A systematic review and meta-analysis. J Med Virol. 2020;92(10):1875-83. [Crossref] [PubMed] [PMC]
- Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46-e7. [Crossref] [PubMed] [PMC]
- Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-9. [Crossref] [PubMed] [PMC]
- Ma A, Cheng J, Yang J, Dong M, Liao X, Kang Y. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. Crit Care. 2020;24(1):288. [Crossref] [PubMed] [PMC]
- Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020;5(1):33. Erratum in: Signal Transduct Target Ther. 2020;5(1):61. [Crossref] [PubMed] [PMC]
- Liu P, Tan XZ. 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology. 2020;295(1):19. [Crossref] [PubMed] [PMC]
- Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020;30(8):4381-9. [Crossref] [PubMed] [PMC]
- Almasi Nokiani A, Shahnazari R, Abbasi MA, Divsalar F, Bayazidi M, Sadatnaseri A. CT severity score in COVID-19 patients, assessment of performance in triage and outcome prediction: a comparative study of different methods. Egypt J Radiol Nucl Med. 2022;53(1):116. [Crossref] [PMC]
- Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020;30(8):4407-16. [Crossref] [PubMed] [PMC]
- Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-6. [Crossref] [PubMed] [PMC]
- Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology. 2020;296(2):E32-E40. [Crossref] [PubMed] [PMC]
- Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. AJR Am J Roentgenol. 2020;215(2):338-43. [Crossref] [PubMed]
- Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. [Crossref] [PubMed] [PMC]
- Zhu J, Ji P, Pang J, Zhong Z, Li H, He C, et al. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J Med Virol. 2020;92(10):1902-14. [Crossref] [PubMed] [PMC]
- Canovi S, Besutti G, Bonelli E, Iotti V, Ottone M, Albertazzi L, et al; Reggio Emilia COVID-19 Working Group;. The association between clinical laboratory data and chest CT findings explains disease severity in a large Italian cohort of COVID-19 patients. BMC Infect Dis. 2021;21(1):157. [Crossref] [PubMed] [PMC]
- Fan L, Li D, Xue H, Zhang L, Liu Z, Zhang B, et al. Progress and prospect on imaging diagnosis of COVID-19. Chin J Acad Radiol. 2020;3(1):4-13. [Crossref] [PubMed] [PMC]
- Wu J, Pan J, Teng D, Xu X, Feng J, Chen YC. Interpretation of CT signs of 2019 novel coronavirus (COVID-19) pneumonia. Eur Radiol. 2020;30(10):5455-62. [Crossref] [PubMed] [PMC]
- Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings with mortality of patients infected with 2019 novel coronavirus in Wuhan, China. PLoS One. 2020;15(3):e0230548. [Crossref] [PubMed] [PMC]
.: Process List