Objective: To determine ocular changes, particularly in vitreous chamber length (VCL) and corneal volume (CV), analyze globe biometric features in emmetrope pediatric beta-thalassemia major (βTM) patients using Cirrus topography and IOLMaster devices, and compare the results to age- and gender-matched healthy individuals. Material and Methods: This cross-sectional case-control study included 36 multi-transfused β-TM patients (Group 1, 72 eyes) with a mean age of 9.18±3.14 years and no other hemoglobinopathies or anemias unrelated to β-TM. A control group (Group 2, 72 eyes) included 36 healthy children who had routine ophthalmology exams. A comprehensive ophthalmologic exam was performed, including auto-refraction, best-corrected visual acuity, and intraocular pressure (IOP), followed by dilated slit-lamp biomicroscopy. The corneal topography and globe biometric evaluation were followed by a pair-wise data comparison. Results: The axial length (AL) (22.58±0.64 vs 23.06±0.71 mm), VCL (15.48±0.68 vs 15.92±0.69 mm), CV (55.47±2.95 vs 57.65±2.83 mm3), IOP (12.68±2.34 vs 11.08±1.68 mmHg), keratometry values (K1, K2, Kmean, Kapex), as well as central corneal thickness (523.00±28.41 vs 547.29±26.45 μm), were all significantly different between groups 1 and 2, respectively (p0.05). Conclusion: β-TM patients appear to have significant ocular growth retardation than relatively age-matched healthy children, as demonstrated by shorter AL and VCL, as well as lower CV. This circumstance could have prompted compensatory biometric modifications, as evidenced by a relatively steeper cornea and thicker crystalline lens, to accomplish emmetropization.
Keywords: Beta-thalassemia major; corneal topography; corneal volume; globe biometry; vitreous chamber length
Amaç: Emetrop pediatrik beta-talasemi majör (β-TM) hastalarında vitreus kamara uzunluğu (VKU) ve korneal hacim (KH) başta olmak üzere oküler değişikliklerin Cirrus topografisi ve IOLMaster cihazlarıyla belirlenmesi, glob biyometrik özelliklerinin analiz edilmesi, sonuçlarının yaş ve cinsiyet uyumlu sağlıklı bireylerle karşılaştırılması. Gereç ve Yöntemler: Bu kesitsel vaka-kontrol çalışmasına, ortalama yaşı 9,18±3,14 olan ve β-TM ile ilişkili başka hemoglobinopati veya anemi olmayan 36 çoklu transfüze β-TM hastası (Grup 1, 72 göz) dâhil edildi. Kontrol grubu (Grup 2, 72 göz) rutin oftalmoloji muayenesi olan 36 sağlıklı çocuğu içeriyordu. Oto-refraksiyon, en iyi düzeltilmiş görme keskinliği ve göz içi basıncı (GİB) dâhil olmak üzere kapsamlı bir oftalmolojik muayene ve ardından dilate yarık lamba biyomikroskopisi yapıldı. Korneal topografi ve glob biyometrik değerlendirmesini ikili veri karşılaştırması takip etti. Bulgular: Aksiyel uzunluk (AU) (22,58±0,64 vs 23,06±0,71 mm), VKU (15,48±0,68 vs 15,92±0,69 mm), KH (55,47±2,95 vs 57,65±2,83 mm3), GİB (12,68±2,34 vs 11,08±1,68 mmHg), keratometri değerleri (K1, K2, Kmean, Kapex) ve santral korneal kalınlık (523,00±28,41 vs 547,29±26,45 μm), sırasıyla Grup 1 ve 2 arasında anlamlı olarak farklıydı (p0,05). Sonuç: β-TM hastaları, daha kısa AU ve VKU ve ayrıca daha düşük KH ile gösterildiği gibi nispeten aynı yaştaki sağlıklı çocuklara göre önemli oküler büyüme geriliğine sahip görünmektedir. Bu durum, emetropizasyonu gerçekleştirmek için nispeten daha dik bir kornea ve daha kalın lens ile kanıtlandığı gibi telafi edici biyometrik modifikasyonlarıyla ilişkili olabilir.
Anahtar Kelimeler: Beta-talasemi majör; korneal topografi; korneal hacim; glob biyometrisi; vitreus kamara uzunluğu
- Liaska A, Petrou P, Georgakopoulos CD, Diamanti R, Papaconstantinou D, Kanakis MG, et al. β-Thalassemia and ocular implications: a systematic review. BMC Ophthalmol. 2016;16:102. [Crossref] [PubMed] [PMC]
- Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61-76. [Crossref] [PubMed]
- Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med. 2005;353 (11):1135-46. [Crossref] [PubMed]
- Kesse-Adu R, Howard J. Inherited anaemias: sickle cell and thalassaemia. Medicine. 2013;41(4):219-24. [Crossref]
- Aksoy A, Aslankurt M, Aslan L, Gül O, Garipardıç M, Celik O, et al. Ocular findings in children with thalassemia major in Eastern Mediterranean. Int J Ophthalmol. 2014;7(1):118-21. [PubMed] [PMC]
- Nowroozzadeh MH, Kalantari Z, Namvar K, Meshkibaf MH. Ocular refractive and biometric characteristics in patients with thalassaemia major. Clin Exp Optom. 2011;94(4):361-6. [Crossref] [PubMed]
- Savini G, Barboni P, Carbonelli M, Hoffer KJ. Repeatability of automatic measurements by a new Scheimpflug camera combined with Placido topography. J Cataract Refract Surg. 2011;37(10):1809-16. [Crossref] [PubMed]
- du Toit R, Vega JA, Fonn D, Simpson T. Diurnal variation of corneal sensitivity and thickness. Cornea. 2003;22(3):205-9. [Crossref] [PubMed]
- Santodomingo-Rubido J, Mallen EA, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol. 2002;86(4):458-62. [Crossref] [PubMed] [PMC]
- Vichinsky EP. Changing patterns of thalassemia worldwide. Ann N Y Acad Sci. 2005;1054:18-24. [Crossref] [PubMed]
- Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480-7. [Crossref] [PubMed] [PMC]
- Daar S, Pathare AV. Combined therapy with desferrioxamine and deferiprone in beta thalassemia major patients with transfusional iron overload. Ann Hematol. 2006;85(5):315-9. [Crossref] [PubMed]
- Mehta S, Dunaief JL. The role of iron in retinal diseases. In: Mehta S, ed. Studies on Retinal and Choroidal Disorders. 1st ed. New York, NY: Humana Press; 2012. p.259e75. [Crossref]
- Dewan P, Gomber S. Ocular changes in multi transfused children with β-thalassemia receiving deferoxamine: a case control study. SA J Child Health. 2011;5(10):11-4. [Link]
- Heydarian S, Jafari R, Dailami KN, Hashemi H, Jafarzadehpour E, Heirani M, et al. Ocular abnormalities in beta thalassemia patients: prevalence, impact, and management strategies. Int Ophthalmol. 2020;40(2): 511-27. [Crossref] [PubMed]
- Taneja R, Malik P, Sharma M, Agarwal MC. Multiple transfused thalassemia major: ocular manifestations in a hospital-based population. Indian J Ophthalmol. 2010;58(2):125-30. [Crossref] [PubMed] [PMC]
- Gartaganis SP, Georgakopoulos CD, Exarchou A, Mela EK, Psachoulia C, Eliopoulou MI, et al. Alterations in conjunctival cytology and tear film dysfunction in patients with beta-thalassemia. Cornea. 2003;22(7):591-7. [Crossref] [PubMed]
- Aksoy A, Aslan L, Aslankurt M, Eser O, Garipardic M, Okumus S, et al. Retinal fiber layer thickness in children with thalessemia major and iron deficiency anemia. Semin Ophthalmol. 2014;29(1):22-6. [Crossref] [PubMed]
- Taher A, Bashshur Z, Shamseddeen WA, Abdulnour RE, Aoun E, Koussa S, et al. Ocular findings among thalassemia patients. Am J Ophthalmol. 2006;142(4):704-5. [Crossref] [PubMed]
- Haghpanah S, Zekavat OR, Bordbar M, Karimi M, Zareifar S, Safaei S, et al. Ocular findings in patients with transfusion-dependent β-thalassemia in southern Iran. BMC Ophthalmol. 2020;20(1):376. [Crossref] [PubMed] [PMC]
- Jafari R, Heydarian S, Karami H, Shektaei MM, Dailami KN, Amiri AA, et al. Ocular abnormalities in multi-transfused beta-thalassemia patients. Indian J Ophthalmol. 2015;63(9):710-5. [Crossref] [PubMed] [PMC]
- Chen H, Lukas TJ, Du N, Suyeoka G, Neufeld AH. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci. 2009;50(4):1895-902. [Crossref] [PubMed]
- Abdel-Malak DSM, Dabbous OAE, Saif MYS, Saif ATS. Ocular manifestations in children with β thalassemia major and visual toxicity of iron chelating agents. J Am Sci. 2012;8(7):633-8. [Link]
- Vogiatzi MG, Macklin EA, Trachtenberg FL, Fung EB, Cheung AM, Vichinsky E, et al; Thalassemia Clinical Research Network. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol. 2009;146(5):546-56. [Crossref] [PubMed] [PMC]
- Elkitkat RS, El-Shazly AA, Ebeid WM, Deghedy MR. Relation of anthropometric measurements to ocular biometric changes and refractive error in children with thalassemia. Eur J Ophthalmol. 2018;28(2):139-43. [Crossref] [PubMed]
- Bourla DH, Laron Z, Snir M, Lilos P, Weinberger D, Axer-Siegel R. Insulinlike growth factor I affects ocular development: a study of untreated and treated patients with Laron syndrome. Ophthalmology. 2006;113(7): 1197.e1-5. [Crossref] [PubMed]
- Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol. 2004;127(2):127-39. [Crossref] [PubMed]
- Wheatherall DJ, Glegg JB. The Thalassemia Syndromes. 4th ed. Oxford: Blackwell Science Ltd; 2001.
- Hashemi H, Khabazkhoob M, Jafarzadehpur E, Yekta AA, Emamian MH, Shariati M, et al. High prevalence of myopia in an adult population, Shahroud, Iran. Optom Vis Sci. 2012;89(7):993-9. [Crossref] [PubMed]
- Murdoch IE, Morris SS, Cousens SN. People and eyes: statistical approaches in ophthalmology. Br J Ophthalmol. 1998;82(8):971-3. [Crossref] [PubMed] [PMC]
- Kashkouli MB, Nojomi M, Parvaresh MM, Sanjari MS, Modarres M, Noorani MM. Normal values of hertel exophthalmometry in children, teenagers, and adults from Tehran, Iran. Optom Vis Sci. 2008;85(10):1012-7. [Crossref] [PubMed]
.: Process List