Objective: Genetic variation at chromosome 8q24 is considered as the potential biomarker for prostate cancer. We aimed to assess the relation between the gene variant of 8q24 rs10090154C>T and the risk of prostate cancer. Material and Methods: A meta-analysis was carried out in January to June 2020 by collecting relevant studies through online databases. The correlation and estimated effect between the gene variant of 8q24 rs10090154C>T and the risk of prostate cancer were analyzed using a Z test. Results: A total of 16 relevant studies were selected (16,842 cases and 18,258 controls). In overall, T allele and CT genotype of 8q24 rs10090154C>T gene polymorphism increased the risk of prostate cancer (OR95%CI=1.238 [1.14-1.34], pT was associated with increased risk of prostate cancer (OR95%CI=1.285 [1.07-1.54], pT was correlated with increased risk of prostate cancer (OR95%CI=1.302 [1.17-1.45], pT gene polymorphism had strong association with the risk of prostate cancer.
Keywords: Prostate cancer; MYC; gene polymorphism; meta-analysis
Amaç: Kromozom 8q24'deki genetik varyasyon prostat kanseri için potansiyel bir biyobelirteç olarak düşünülür. 8q24 rs10090154C>T gen varyantı ile prostat kanseri riski arasındaki ilişkiyi değerlendirmeyi amaçladık. Gereç ve Yöntemler: Çevrimiçi veri tabanlarını kullanarak Ocak-Haziran 2020 tarihleri arasındaki ilgili çalışmaları toplamak suretiyle bir meta-analiz yaptık. 8q24 rs10090154C>T gen varyantı ile prostat kanseri riski arasındaki korelasyon ve tahmini etki Z testi kullanılarak analiz edildi. Bulgular: Toplam 16 çalışma seçildi (16,842 olgu ve 18,258 kontrol). Toplamda, T aleli ve of 8q24 rs10090154C>T gen polimorfizminin CT genotipi prostat kanserini artırıyorken (OR, %95 GA=1.238 [1.14-1.34], pT'nin T alelinin artmış prostat kanseri riski ile ilişkili olduğunu (OR %95 GA=1.285 [1.07- 1.54], pT'nin CT genotipi, prostat kanseri riskinin artmasıyla korele iken (OR %95 GA=1,302 [1,17-1.45], pT gen polimorfizminin prostat kanseri riski ile güçlü bir ilişkisi olduğunu doğruladı.
Anahtar Kelimeler: Prostat kanseri; MYC; gen polimorfizmi; meta-analiz
- Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Pi-eros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-53. [Crossref] [PubMed]
- Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78-85. [Crossref] [PubMed]
- Wasserman NF, Aneas I, Nobrega MA. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res. 2010;20(9):1191-7. [Crossref] [PubMed] [PMC]
- Gudmundsson J, Sulem P, Gudbjartsson DF, Masson G, Agnarsson BA, Benediktsdottir KR, et al. A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer. Nat Genet. 2012;44(12):1326-9. [Crossref] [PubMed] [PMC]
- Agalliu I, Wang Z, Wang T, Dunn A, Parikh H, Myers T, et al. Characterization of SNPs associated with prostate cancer in men of Ashkenazic descent from the set of GWAS identified SNPs: impact of cancer family history and cumulative SNP risk prediction. PLoS One. 2013;8(4):e60083. [Crossref] [PubMed] [PMC]
- Dave K, Sur I, Yan J, Zhang J, Kaasinen E, Zhong F, et al. Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth. Elife. 2017;6:e23382. [Crossref] [PubMed] [PMC]
- Ahmadiyeh N, Pomerantz MM, Grisanzio C, Herman P, Jia L, Almendro V, et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A. 2010;107(21):9742-6. [Crossref] [PubMed] [PMC]
- Li R, Qin Z, Tang J, Han P, Xing Q, Wang F, et al. Association between 8q24 Gene Polymorphisms and the Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. J Cancer. 2017;8(16):3198-211. [Crossref] [PubMed] [PMC]
- Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):336-41. Erratum in: Int J Surg. 2010;8(8):658. [Crossref] [PubMed]
- Rodriguez S, Gaunt TR, Day IN. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169(4):505-14. [Crossref] [PubMed] [PMC]
- Bae JM. Comparison of methods of extracting information for meta-analysis of observational studies in nutritional epidemiology. Epidemiol Health. 2016;38:e2016003. [Crossref] [PubMed] [PMC]
- Al Olama AA, Kote-Jarai Z, Giles GG, Guy M, Morrison J, Severi G, et al. Lophatananon A; UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology; UK Prostate testing for cancer and Treatment study (ProtecT Study) Collaborators, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper C, Donovan JL, Hamdy FC, Neal DE, Eeles RA, Easton DF. Multiple loci on 8q24 associated with prostate cancer susceptibility. Nat Genet. 2009;41(10):1058-60. [Crossref] [PubMed]
- Beebe-Dimmer JL, Levin AM, Ray AM, Zuhlke KA, Machiela MJ, Halstead-Nussloch BA, et al. Chromosome 8q24 markers: risk of early-onset and familial prostate cancer. Int J Cancer. 2008;122(12):2876-9. [Crossref] [PubMed] [PMC]
- Benford ML, VanCleave TT, Lavender NA, Kittles RA, Kidd LR. 8q24 sequence variants in relation to prostate cancer risk among men of African descent: a case-control study. BMC Cancer. 2010;10:334. [Crossref] [PubMed] [PMC]
- Chang BL, Spangler E, Gallagher S, Haiman CA, Henderson B, Isaacs W, et al. Validation of genome-wide prostate cancer associations in men of African descent. Cancer Epidemiol Biomarkers Prev. 2011;20(1):23-32. [Crossref] [PubMed] [PMC]
- Cheng I, Chen GK, Nakagawa H, He J, Wan P, Laurie CC, et al. Evaluating genetic risk for prostate cancer among Japanese and Latinos. Cancer Epidemiol Biomarkers Prev. 2012;21(11):2048-58. [Crossref] [PubMed] [PMC]
- Liu M, Shi X, Yang F, Wang J, Xu Y, Wei D, et al. The Cumulative Effect of Gene-Gene and Gene-Environment Interactions on the Risk of Prostate Cancer in Chinese Men. Int J Environ Res Public Health. 2016;13(2):162. [Crossref] [PubMed] [PMC]
- Murphy AB, Ukoli F, Freeman V, Bennett F, Aiken W, Tulloch T, et al. 8q24 risk alleles in West African and Caribbean men. Prostate. 2012;72(12):1366-73. [Crossref] [PubMed] [PMC]
- Oskina NA, Boyarskikh UA, Lazarev AF, Petrova VD, Ganov DI, Tonacheva OG, et al. A replication study examining association of rs6983267, rs10090154, and rs1447295 common single nucleotide polymorphisms in 8q24 region with prostate cancer in Siberians. Urol Oncol. 2014;32(1):37.e7-12. [Crossref] [PubMed]
- Saldanha ÉLDD. Influência do polimorfismo genético no desenvolvimento do câncer de próstata hereditário: Universidade de São Paulo. 2018. [Link]
- Salinas CA, Kwon E, Carlson CS, Koopmeiners JS, Feng Z, Karyadi DM, et al. Multiple independent genetic variants in the 8q24 region are associated with prostate cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17(5):1203-13. [Crossref] [PubMed]
- Sun J, Lange EM, Isaacs SD, Liu W, Wiley KE, Lange L, et al. Chromosome 8q24 risk variants in hereditary and non-hereditary prostate cancer patients. Prostate. 2008;68(5):489-97. [Crossref] [PubMed]
- Tindall EA, Bornman MS, van Zyl S, Segone AM, Monare LR, Venter PA, et al. Addressing the contribution of previously described genetic and epidemiological risk factors associated with increased prostate cancer risk and aggressive disease within men from South Africa. BMC Urol. 2013;13(1):74. [Crossref] [PubMed] [PMC]
- Wang Y, Ray AM, Johnson EK, Zuhlke KA, Cooney KA, Lange EM. Evidence for an association between prostate cancer and chromosome 8q24 and 10q11 genetic variants in African American men: the Flint Men's Health Study. Prostate. 2011;71(3):225-31. [Crossref] [PubMed] [PMC]
- Yamada H, Penney KL, Takahashi H, Katoh T, Yamano Y, Yamakado M, et al. Replication of prostate cancer risk loci in a Japanese case-control association study. J Natl Cancer Inst. 2009;101(19):1330-6. [Crossref] [PubMed]
- Reis ST, Viana NI, Leite KR, Diogenes E, Antunes AA, Iscaife A, et al. Role of Genetic Polymorphisms in the Development and Prognosis of Sporadic and Familial Prostate Cancer. PLoS One. 2016;11(12):e0166380. [Crossref] [PubMed] [PMC]
- Cheng I, Plummer SJ, Jorgenson E, Liu X, Rybicki BA, Casey G, et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet. 2008;16(4):496-505. [Crossref] [PubMed] [PMC]
- Ren XQ, Zhang JG, Xin SY, Cheng T, Li L, Ren WH. Variants on 8q24 and prostate cancer risk in Chinese population: a meta-analysis. Int J Clin Exp Med. 2015;8(6):8561-70. [PubMed] [PMC]
- Liu H, Wang B, Han C. Meta-analysis of genome-wide and replication association studies on prostate cancer. Prostate. 2011;71(2):209-24. [Crossref] [PubMed]
- Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet. 2007;39(5):638-44. [Crossref] [PubMed] [PMC]
- Kupfer SS, Torres JB, Hooker S, Anderson JR, Skol AD, Ellis NA, et al. Novel single nucleotide polymorphism associations with colorectal cancer on chromosome 8q24 in African and European Americans. Carcinogenesis. 2009;30(8):1353-7. [Crossref] [PubMed] [PMC]
- Kido T, Sikora-Wohlfeld W, Kawashima M, Kikuchi S, Kamatani N, Patwardhan A, et al. Are minor alleles more likely to be risk alleles? BMC Med Genomics. 2018;11(1):3. [Crossref] [PubMed] [PMC]
- Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biol. 2017;18(1):77. [Crossref] [PubMed] [PMC]
- Amundadottir LT, Thorvaldsson S, Gudbjartsson DF, Sulem P, Kristjansson K, Arnason S, et al. Cancer as a complex phenotype: pattern of cancer distribution within and beyond the nuclear family. PLoS Med. 2004;1(3):e65. [Crossref] [PubMed] [PMC]
- Al Nakouzi N, Cotteret S, Commo F, Gaudin C, Rajpar S, Dessen P, et al. Targeting CDC25C, PLK1 and CHEK1 to overcome Docetaxel resistance induced by loss of LZTS1 in prostate cancer. Oncotarget. 2014;5(3):667-78. [Crossref] [PubMed] [PMC]
.: Process List