Objective: The objective of the study was to identify the best-fitted survival regression model and to find factors that accelerate the time of blindness of glaucoma patients in University of Gondar Comprehensive Specialized Hospital. Material and Methods: Secondary data was taken from the patient's card, collected from January 2014-April 2018 in the hospital. In this study 401 glacoma patients' record was considered. Kaplan-Meier survival analysis, Semiparametric and Parametric AFT model were applied to identify factors that lead blindness of glaucoma patients. Results: From the total 401 glaucoma patients 23.69% was blind. From the total sample 38.41% and 61.59% were female and male glaucoma patients, respectively. The median time of blindness for the two eyes or one eye was 16 months after confirmation of glaucoma disease. In the multivariable Weibull accelerated failure-time model it has found that age group (18-43) (TR =1.29233, CI: 1.039576 to 1.606536), advanced stage of glaucoma (TR =1.281674, CI: 1.096103 to 1.498662), duration of diagnosis 1-5 years (TR = 1.944649, CI: 1.332738 to 2.83751) and duration of diagnosis >= 6 years (TR = 2.683586, CI: 1.367533 to 5.26615) were significantly associated with the time to blindness. Conclusion: The multivariable Weibull model revealed that age, duration of diagnosis and stage of glaucoma were major factors that affect the survival probability of glaucoma patients. Finally, based on the results of the study we can conclude that the Weibull regression model was the best fitted parametric accelerated failure-time model for identifying the major factors related to glaucoma patients.
Keywords: Glaucoma; risk factor; survival model; time of blindness
Amaç: Çalışmanın amacı, en iyi sağkalım regresyon modelini belirlemek ve Gondar Üniversitesi Kapsamlı Özel Hastanesi'ndeki glokom hastalarının körlük süresini hızlandıran faktörleri bulmaktır. Gereç ve Yöntemler: İkinci veri Ocak 2014-Nisan 2018 arasında hastane tarafından toplanan hasta kartlarından alınmıştır. Bu çalışmada 401 glokom hastasının kayıtları dikkate alınmıştır. Glokom hastalarında körlüğe neden olan faktörleri belirlemek için Kaplan-Meier sağkalım analizi, Yarıparametrik ve Parametrik AFT model uygulanmıştır. Bulgular: 401 glokom hastasının %23.69'u kördü. Glokom hastalarının %38.41'i kadın, %61.59'u erkekti. Glokom hastalığı tanısı konduktan sonra bir ya da iki göz körlüğünün medyan süresi 16 aydır. Çok değişkenli Weibull hızlandırılmış başarısızlık-zaman modelinde yaş grubu (18-43) (TR =1.29233, CI: 1.039576;1.606536), ilerlemiş glokom evresi (TR =1.281674, CI: 1.096103;1.498662), tanı süresi 1-5 yıl (TR = 1.944649, CI: 1.332738;2.83751) körlük süresi ile anlamlı olarak ilişkili bulunmuştur. Sonuç: Çok değişkenli Weibull modeli yaş, hastalık süresi ve glokom evresinin glokom hastalarının sağkalım olasılığını etkileyen başlıca faktörler olduğunu ortaya çıkarmıştır. Sonuç olarak, çalışma sonuçlarına göre Weibull regresyon modeli; glokom hastaları ile ilişkili başlıca faktörleri belirlemede en iyi tahmini veren parametrik hızlandırılmış başarısızlık-zaman modelidir.
Anahtar Kelimeler: Glokom; risk faktörü; sağkalım modeli; körlük süresi
- Quaranta L, Rivan I, Gerardi C, Oddone F, Floriano I, Konstas AGP. Quality of life in glaucoma: a review of the literature. Adv Ther. 2016;33:959-981. [Crossref] [PubMed] [PMC]
- Katz LJ, Steinmann WC, Kabir A, Molineaux J, Wizov SS, Marcellino G. Selective laser trabeculoplasty versus medical therapy as initial treatment of glaucoma: a prospective, randomized trial. J Glaucoma. 2012;21(7):460-8. [Crossref] [PubMed]
- Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol. 1996;80(5):389-93. [Crossref] [PubMed] [PMC]
- Bhargava JS, Patel B, Foss AJ, Avery AJ, King AJ. Views of glaucoma patients on aspects of their treatment: an assessment of patient preference by conjoint analysis. Invest Ophthalmol Vis Sci. 2006;47(7):2885-8. [Crossref] [PubMed]
- Janz NK, Wren PA, Guire KE, Musch DC, Gillespie BW, Lichter PR. Fear of blindness in the Collaborative Initial Glaucoma Treatment Study: patterns and correlates over time. Ophthalmology. 2007;114(12):2213-20. [Crossref] [PubMed]
- Quek DTL, Koh VT, Tan GS, Perera SA, Wong TT, Aung T. Blindness and long-term progression of visual field defects in Chinese patients with primary angle-closure glaucoma. Am J Ophthalmol. 2011;152(3):463-9. [Crossref] [PubMed]
- Pascolini D, Maliotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614-8. [Crossref] [PubMed]
- Abdull MM, Sivasubramaniam S, Murthy GV, Gilbert C, Abubakar T, Ezelum C, et al. Causes of blindness and visual impairment in Nigeria: the Nigeria National Blindness and visual impairment Survey. Invest Ophthalmol Vis Sci. 2009;50(9):4114-20. [Crossref] [PubMed]
- Berhane Y, Worku A, Bejiga A, Adamu L, Alemayehu W, Bedri A, et al. Prevalence and cause of blindness and low vision in Ethiopia. Ethiop J Health. 2007;21(3):204-10.
- Cypel MC, Kasahara N, Atique D, Umbelino CC, Alcântara MP, Seixas FS, et al. Quality of life in patients with glaucoma who live in a developing country. Int Ophthalmol. 2004;25(5-6):267-72. [Crossref] [PubMed]
- Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association. 1958;53(282):457-81. [Crossref]
- Gelfand EA, Diggle P, Guttorp, Fuentes P. Handbook of Spatial Statistics. 1st ed. Boca, Raton: CRC Press; 2010. p.619.
- Lambert, Philippe, Collett, Dave, Kimber, Alan, Johnson, et al. Parametric accelerated failure time models with random effects and an application to kidney transplant survival. Stat Med. 2004;23(20):3177-92. [Crossref] [PubMed]
- Diettz K, Gail M, Krickeberg K, Samet, Tsiatis J. Statistics for Biology and Health. Survival Analysis. Springer; 2002.
- Machin D, Cheung, Parmar YB. Survival Analysis: A Practical Approach. 2nd ed. Hoboken, NJ: John Wiley & Sons; 2006. p.261. [Crossref]
- Kleinbau DG, Klein M. Survival Analysis: A Self-Learning Text. 2nd ed. New York, NY: Springer Science & Business Media; 2006. p.590.
- Smith T, Smith B. Kaplan Meier and Cox Proportional Hazards Modeling: Hands on Survival Analysis. Workshop Research Paper. 2003;1-23.
- Hosmer DW, Lemeshow S, May S. Applied Survival Analysis: Regression of Time-to-Event. 2nd ed. Hoboken. NJ: John Wiley & Sons; 2008. p.416. [Crossref]
- Kalbfleisch JD, Prentice RS. The Statistical Analysis of Failure Time Data. 2nd ed. Hoboken, NJ: Wiley Series in Probability & Statistics; 2002. p.462. [Crossref]
- Steven, Austin. Cataract and glaucoma surgery consultant at Vold Vision; 2013. (479) 442-8653.
- Ayele FA, Banchamelak Z, Assefa Y, Legesse K, Azale T, Burton MJ. The impact of glaucoma on quality of life in Ethiopia: a case-control study. BMC Ophthalmol. 2017;17:248. [Crossref] [PubMed] [PMC]
- Bailey LA, Okereke OI, Kawachi I, Cioffi GA, Pasquale LR, Kang JH. Ophthalmic and Glaucoma Treatment Characteristics Associated With Changes in Health-related Quality of Life Before and After Newly Diagnosed Primary Open-angle Glaucoma in Nurses? Health Study Participants. J Glaucoma. 2016 Mar;25(3):e220-8. doi: 10.1097/IJG.0000000000000304. [Crossref]
- Hattenhauer MG, Johnson DH, Ing HH, Herman DC, Hodge DO, Yawn BP, et al. The probability of blindness from open-angle glaucoma. Ophthalmology. 1998;105(11):2099-104. [Crossref]
.: Process List