Objective: In this study, the number of bacteriae in the air at five different regions in Eskişehir (Turkey) according to the settle plate method and some meteorological factors such as temperature and relative humidity were collected and analyzed statistically. The data were used to predict the amount of bacteriae using machine learning algorithms. Material and Methods: Air samples were taken from specified sampling points using the settle plate method. The random forest method, multivariate adaptive regression splines, support vector machine and ordinary least squares models were employed to analyze a qualified data set collected through 5 different monitoring locations in Eskişehir city, Turkey. All analyses were conducted using RStudio Software (version 1.2.1335). Results: The results revealed that all variables including weather characteristics and particulate matters were found statistically significant on the amount of the bacteria. Among modeling methods, the random forest model overperformed the others in terms of root mean square. Conclusion: Results might be useful for researchers studying bacterial density. These findings may provide policy-makers with crucial information for a better climate and health policy development, which helps address the conflict between development and air pollution, may be applicable in Turkey and other countries as well.
Keywords: Bacteria; particulate matter; random forest method; statistical modelling
Amaç: Bu çalışmada, Eskişehir (Türkiye) ilinde 5 farklı bölgede petri kapları kullanılarak; bakteri miktarları, sıcaklık, nem vb. bazı meteorolojik değerler elde edilmiş ve istatistiksel olarak analiz edilmiştir. Elde edilen verilerdeki bakteri miktarı, makine öğrenimi algoritmalarından bazıları kullanılarak tahmin edilmiştir. Gereç ve Yöntemler: Petri kabı yöntemi kullanılarak belirlenen örnekleme noktalarından hava örnekleri alınmıştır. Rastgele orman algoritması, çoklu adaptif regresyon eğrileri, destek vektör makinesi ve sıradan en küçük kareler yöntemleri, Eskişehir'deki 5 farklı bölgeden toplanan verileri analiz etmek için kullanılmıştır. Bütün analiz ve hesaplamalarda RStudio kullanılmıştır (versiyon 1.2.1335). Bulgular: Sonuçlar incelendiğinde, bütün değişkenlerin; çevre faktörlerin ve kirleticilerin, bakteri yoğunluğu üzerindeki etkisi istatistiksel olarak anlamlı bulunmuştur. Yöntemler arasında, hata kareler ortalamasının karekökü kullanılarak seçim yapıldığında rastgele orman algoritması en iyi sonucu vermiştir. Sonuç: Bu sonuçlar bakteri miktarı çalışan araştırmacılar için ileride yararlı olabilir. Bulgular, politika yapıcılara daha iyi iklimlendirme ve sağlık politikası geliştirme için önemli bilgiler sağlayabilir; kalkınma ile hava kirliliği arasındaki çatışmayı çözmeye yardımcı olabilir, benzer koşullar görülen diğer şehir ve ülkelerde de uygulanabilir.
Anahtar Kelimeler: Bakteri; partikül madde; rastgele orman modeli; istatistiksel modelleme
- Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environment International. 2016;86:14-23. [Crossref] [PubMed]
- Kan Kılınç B. The effects o industry increase and urbanization on air pollutants in Turkey: a nonlinear air quality model. Applied Ecology and Environmental Research. 2019;17(4):9889-903. [Crossref]
- Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, et al. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol. 2013;97(14):6561-70. [Crossref] [PubMed]
- Georgakopoulos DG, Despres V, Frohlich-Nowoisky J, Psenner R, Ariya PA, Posfai M, et al. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences. 2009;6(4):721-37. [Crossref]
- Mandal J, Brandl H. Bioaerosols in indoor environment-a review with special reference to residential and occupational locations. Open Environ Biol Monit J. 2011;4:83-96. [Crossref]
- Van Leuken JPG, Swart AN, Havelaar AH, Van Pul A, Van der Hoek W, Heederik D. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock-A review to inform risk assessment studies. Microb Risk Anal. 2016;1:19-39. [Crossref] [PubMed] [PMC]
- Jones AM, Harrison RM. The effects of meteorological factors on atmospheric bioaerosol concentrations--a review. Sci Total Environ. 2004;326(1-3):151-80. [Crossref] [PubMed]
- Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci (China). 2018;67:23-35. [Crossref] [PubMed] [PMC]
- Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233-42. [Crossref] [PubMed]
- Burge HA, Rogers CA. Outdoor allergens. Environ Health Perspect. 2000;108 Suppl 4(Suppl 4):653-9. [Crossref] [PubMed] [PMC]
- Haas D, Galler H, Luxner J, Zarfel G, Buzina W, Friedl H, et al. The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmos Environ. 2013;65:215-22. [Crossref]
- Menteşe S, Rad YA, Arısoy M, Güllü G. Ankara şehir atmosferinde biyoaerosol seviyelerinin mekansal değişimi [Spatial variation of bioaeorol levels in the urban atmosphere of Ankara]. Ekoloji. 2009;19:21-8. [Crossref]
- Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning. 2nd ed. New York: Springer; 2008. [Crossref]
- Friedman JH. Multivariate adaptive regression splines. Annals of Statistics. 1991;19(1):1-67. [Crossref]
- Craven P, Wahba G. Smoothing noisy data with spline functions. Numer Math. 1978;31:377-403. [Crossref]
- James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning: with Applications in R. New York: Springer, Ch.10 Boosting and Additive Trees; 2018. p.337-72.
- Epstein PR. Climate and health. Science. 1999;285(5426):347-8. [Crossref] [PubMed]
- Rodó X, Pascual M, Doblas-Reyes FJ, Gershunov A, Stone DA, Giorgi F, et al. Climate change and infectious diseases: can we meet the needs for better prediction? Clim Chang. 2013;118:625-40. [Crossref]
- Ostfeld RS, Brunner JL. Climate change and Ixodes tick-borne diseases of humans. Philos Trans R Soc Lond B Biol Sci. 2015;370(1665):20140051. [Crossref] [PubMed] [PMC]
- Schwab F, Gastmeier P, Meyer E. The warmer the weather, the more gram-negative bacteria - impact of temperature on clinical isolates in intensive care units. PLoS One. 20145;9(3):e91105. [Crossref] [PubMed] [PMC]
- Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. Environmental and health impacts of air pollution: a review. Front Public Health. 2020;8:14. [Crossref] [PubMed] [PMC]
- Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. Microorganisms associated particulate matter: a preliminary study. Sci Total Environ. 2014;479-80:109-16. [Crossref] [PubMed]
- Wu DM, Zhang Y, Qin WW, Tian Y, Li AG, Hou LA, et al. Assessment of seasonal variations in concentration, particle-size distribution, and taxonomic composition of airborne fungi in a courtyard space. Atmospheric Pollution Research. 2021;12(2):113-21. [Crossref]
.: Process List