Tip 2 diabetes mellitus (T2DM), dünya çapında en yaygın kronik hastalıklar arasındadır ve bu süreçte kardiyovasküler (KV) komplikasyonların önlenmesi önemli bir tedavi hedefidir. Sodyum-glukoz ko-transporter-2 (SGLT2) inhibitörleri, glukozun büyük oranda geri emiliminin sağlandığı böbrek proksimal tübüllerinde glukoz reabsorbsiyonunu engelleyerek antidiyabetik etki gösterirler. Üriner glukoz kaybındaki artışa karşın, metabolik adaptasyon olarak keton cisimciklerin enerji üretiminde artmış kullanımı ve vücut yağ yüzdesinde azalma meydana gelir. SGLT2 inhibitörleri; intraglomerüler basıncı ve hiperfiltrasyonu azaltır ve böylece filtrasyon bariyeri üzerindeki fiziksel stres, albüminüri ve tübüler reabsorpsiyon için gerekli oksijen talebi azaltılmış olur. Bu avantaj sayesinde; daha az glukotoksisite ve uzun vadede tübüler işlevi koruyan kortikal oksijenizasyonda optimal iyileşme sağlanır. SGLT2 inhibitörleri ayrıca sistemik hipoksiyi benzeri bir mekanizma ile eritropoezi uyarabilir. Öte yandan; aterosklerotik kardiyovasküler hastalığı ve T2DM tanılı hastalarda, farklı SGLT2 inhibitörleri ile yapılan çalışmalarda KV ölüm ilişkili heterojen sonuçlar olması nedeniyle ileri çalışmalara olan ihtiyaç ortadadır. Son yıllardaki geniş çaplı randomize klinik çalışmalar, SGLT2 inhibitörlerinin T2DM olsun olmasın tüm kalp yetersizliği (KY) olgularında klinik yararlar sağlayabileceği ve kronik böbrek hasarı progresyonunu yavaşlatabileceği düşüncesini ortaya koymuştur. Mevcut bilimsel veriler ışığında; SGLT2 inhibitörleri, kardiyorenal avantajları sayesinde ilgili güncel kılavuzlarda önemli bir yer edinmektedir. Bu derlemede, SGLT2 inhibitörlerinin KY ve kronik böbrek hastalığı tedavisindeki güncel rolü gözden geçirilmiştir.
Anahtar Kelimeler: Diabetes mellitus; kalp yetersizliği; kronik böbrek hastalığı; sodyum-glukoz ko-transporter 2 inhibitörleri
Type 2 diabetes mellitus (T2DM) is among the most common chronic diseases worldwide and prevention of cardiovascular (CV) complications is an important treatment goal in this process. sodium-glucose co-transporter-2 (SGLT2) inhibitors show antidiabetic effects by preventing glucose reabsorption in the proximal tubules of the kidney where glucose is largely reabsorbed. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. The heterogeneity of the associations with outcomes of different SGLT2 inhibitors on CV death among patients with T2D and atherosclerotic cardiovascular disease requires further study. Large-scale randomized clinical trials in recent years have suggested that SGLT2 inhibitors can provide clinical benefits and slow the progression of chronic kidney disease in all cases of heart failure (HF), with or without T2DM. In the light of the present results; SGLT2 inhibitors occupy an important place in relevant current guidelines due to their cardiorenal advantages. We aimed to reviews the current role of SGLT2 inhibitors in the treatment of HF and chronic kidney disease.
Keywords: Diabetes mellitus; heart failure; chronic kidney disease; sodium-glucose co-transporter 2 inhibitors
- World Health Organization [Internet]. Erişim linki: [Link]
- MacDonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, McKelvie R, et al. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J. 2008; 29(10):1224-40. [Crossref] [PubMed]
- Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004; 447(5):510-8. Erratum in: Pflugers Arch. 2004; 447(5):813-5. [Crossref] [PubMed]
- Chin E, Zhou J, Bondy C. Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney. J Clin Invest. 1993;91(4):1810-5. [Crossref] [PubMed] [PMC]
- Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752-72. [Crossref] [PubMed]
- Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al; CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644-57. [Crossref] [PubMed]
- Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-28. [Crossref] [PubMed]
- Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al; DECLARE-TIMI 58 Investigators. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347-57. [PubMed]
- McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995-2008. [PubMed]
- Nassif ME, Windsor SL, Tang F, Khariton Y, Husain M, Inzucchi SE, et al. Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction: The DEFINE-HF trial. Circulation. 2019;140(18):1463-76. [PubMed]
- Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al; EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323-34. [Crossref] [PubMed]
- Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al; CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24): 2295-306. [Crossref] [PubMed]
- De Nicola L, Gabbai FB, Garofalo C, Conte G, Minutolo R. Nephroprotection by SGLT2 inhibition: Back to the future? J Clin Med. 2020;9(7): 2243. [Crossref] [PubMed] [PMC]
- Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease? Curr Opin Nephrol Hypertens. 2017; 26(5):358-67. [Crossref] [PubMed]
- Giugliano D, De Nicola L, Maiorino MI, Bellastella G, Garofalo C, Chiodini P, et al. Preventing major adverse cardiovascular events by SGLT-2 inhibition in patients with type 2 diabetes: the role of kidney. Cardiovasc Diabetol. 2020;19(1):35. [Crossref] [PubMed] [PMC]
- Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-ınhibitors. J Am Soc Nephrol. 2020;31(5):907-19. [Crossref] [PubMed] [PMC]
- Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15): 1436-46. [PubMed]
- Ito D, Shimizu S, Inoue K, Saito D, Yanagisawa M, Inukai K, et al. Comparison of iprag liflozin and pioglitazone effects on nonalcoholic fatty liver disease in patients with type 2 diabetes: A randomized, 24-week, open-label, active-controlled trial. Diabetes Care. 2017; 40(10):1364-72. [Crossref] [PubMed]
- Kinoshita T, Shimoda M, Nakashima K, Fushimi Y, Hirata Y, Tanabe A, et al. Comparison of the effects of three kinds of glucose-lowering drugs on non-alcoholic fatty liver disease in patients with type 2 diabetes: A randomized, open-label, three-arm, active control study. J Diabetes Investig. 2020;11(6):1612-22. [Crossref] [PubMed] [PMC]
- Kaneto H, Obata A, Kimura T, Shimoda M, Okauchi S, Shimo N,et al. Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic β-cell function and reduction of insulin resistance. J Diabetes. 2017;9(3):219-25. English. [Crossref] [PubMed]
- Ni L, Yuan C, Chen G, Zhang C, Wu X. SGLT2i: beyond the glucose-lowering effect. Cardiovasc Diabetol. 2020;19(1):98. [Crossref] [PubMed] [PMC]
- Wilding J. SGLT2 inhibitors and urinary tract infections. Nat Rev Endocrinol. 2019;15(12): 687-8. [Crossref] [PubMed]
- Aeddula NR, Cheungpasitporn W, Thongprayoon C, Pathireddy S. Epicardial adipose tissue and renal disease. J Clin Med. 2019; 8(3):299. [Crossref] [PubMed] [PMC]
- Huang CY, Lee JK. Sodium-glucose co-transporter-2 inhibitors and major adverse limb events: A trial-level meta-analysis including 51 713 individuals. Diabetes Obes Metab. 2020;22(12):2348-55. [Crossref] [PubMed]
- Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors: A state-of- the-art review. JACC Basic Transl Sci. 2020; 5(6):632-44. [Crossref] [PubMed] [PMC]
- Seferović PM, Fragasso G, Petrie M, Mullens W, Ferrari R, Thum T, et al. Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020; 22(9):1495-503. [Crossref] [PubMed]
- Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166):31-9. Erratum in: Lancet. 2019; 393(10166):30. [Crossref] [PubMed]
- Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al; VERTIS CV Investigators. Cardiovascular Outco mes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425-35. [Crossref] [PubMed]
- Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413-24. [PubMed]
- Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al; SOLOIST-WHF Trial Investigators. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117-28. [Crossref] [PubMed]
- Çavuşoğlu Y, Altay H, Cahn A, Celik A, Demir S, Kılıçaslan B, et al. Sodium glucose co-transporter 2 inhibitors in heart failure therapy. Turk Kardiyol Dern Ars. 2020;48(3):330-54. English. [Crossref] [PubMed]
- Seferović PM, Coats AJS, Ponikowski P, Filippatos G, Huelsmann M, Jhund PS, et al. European Society of Cardiology/Heart Failure Association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. Eur J Heart Fail. 2020;22(2):196-213. [Crossref] [PubMed]
- Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323. Erratum in: Eur Heart J. 2020;41(45):4317. [Crossref] [PubMed]
- Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019; 140(11): e596-e646. Erratum in: Circulation. 2019;1 40(11):e649-e650. Erratum in: Circulation. 2020;141(4):e60. Erratum in: Circulation. 2020;141(16):e774. [PubMed] [PMC]
.: Process List