Amaç: Maksimal laktat dengesi (MLD), şiddetli egzersiz alanının alt sınırını belirleyebilmenin geçerli ve güvenilir bir yöntemidir. Diğer yandan, yakın zamanda ortaya atılan bir teknik, şiddetli egzersiz alanının üst sınırını belirlemede popüler olmuştur (the highest intensity; IHIGH). Ancak bu yeni tekniğin altında yatan teorik temele dayalı olarak, MLD'yi sorgulayan bir çalışma yapılmamıştır. Bu çalışmanın amacı, IHIGH belirlemede kullanılan bu yöntemin alt sınıra uygulanması sonucunda elde edilecek egzersiz şiddetinin MLD'yi hangi düzeyde karşılayacağının araştırılmasıydı. Gereç ve Yöntemler: Çalışma, iyi antrene 10 bisiklet sporcusuyla yapıldı. Katılımcılar, tüketici kademeli egzersizlerden sonra bireysel IHIGH düzeylerinin belirlenmesi için bir dizi sabit yüklü tüketici egzersize tabi tutuldu. Bireysel IHIGH düzeyleri, hâlen zirve oksijen kullanımı veren (⩒O2pik) en yüksek egzersiz şiddeti olarak kabul edildi. MLD, farklı egzersiz şiddetlerinde yapılan 30 dk'lık submaksimal egzersizlerin 30 ve 10. dk kan laktatı farklarının 1 mmol'L-1'den az olabildiği en yüksek egzersiz şiddeti dikkate alınarak belirlendi. Değişkenler arasındaki farklılıklar, eşleştirilmiş örneklem ttest ile değerlendirildi. Etki büyüklüğü (EB) Cohen d'ye göre analiz edildi. Bulgular: Beklendiği gibi MLD ve IHIGH egzersiz şiddetine ait ortalama ⩒O2 farkları anlamlıydı (55,2±4,50'ye kıyasla 61,2±5,06 mL∙dk-1∙kg-1; p=0,000; EB=2,17). Ancak MLD %5 aşıldığında yapılan bir egzersize ait ortalama ⩒O2 değerleri, IHIGH'ı belirlemede kullanılan yöntemle elde edilen ⩒O2pik'e ulaşamadı (56,3±3,42'ye kıyasla 60,6±5,02 mL'dk-1'kg-1; p=0,002; EB=1,50). Sonuç: Elde edilen bulgulara göre IHIGH'ı belirlemede kullanılan prosedürün ve şiddetli egzersiz alanı için hesaplanan ⩒O2pik'in aynı alanın alt sınırı için geçerli olmadığı ortaya koyuldu.
Anahtar Kelimeler: En yüksek yoğunluk; maksimal laktat dengesi; VO2maks; VO2pik
Objective: Maximal lactate steady-state (MLSS) is a valid and reliable method for determining the lower limit of the severe exercise domain. Meanwhile, a recently introduced technique, called as the highest intensity (IHIGH), has become popular for detecting the upper boundary of severe exercise domain. However, no study has been conducted to question MLSS based on the theoretical basis of this new technique. The aim of this study was to investigate at what level the exercise intensity obtained as a result of applying this method (i.e., IHIGH) to the lower boundary corresponds to the MLSS. Material and Methods: This study was conducted with well-trained 10 cyclists. Following exhaustive incremental exercises, participants were subjected to a series of constant work-rate exhaustive exercises to determine their individual work-rates corresponding to the IHIGH. Their individual IHIGH levels were considered as the highest exercise intensity which is still giving peak oxygen consumption ⩒O2peak). The MLSS was determined as considering the highest exercise intensity at which the 30th and 10th minute blood lactate differences, obtained from 30-minute of submaximal exercises performed at different exercise intensities, could be less than 1 mmol'L-1. Differences between variables were evaluated with paired samples t-test. The effect size (ES) was analysed based on Cohen's d. Results: As expected, mean ⩒O2 difference between MLSS and IHIGH was significantly different (55.2±4.50 vs. 61.2±5.06 mL∙min-1∙kg-1; p=0.000; ES=2.17). However, when the MLSS was exceeded 5%, exercising ⩒O2 response could not elicit the ⩒O2peak obtained by the method used to determine the IHIGH (60.6±5.02 vs. 56.3±3.42 mL min-1kg-1; p=0.002; ES=1.50). Conclusion: According to the findings, it was revealed that the procedure used to determine a IHIGH for the upper bound and predicted ⩒O2peak for the severe exercise domain are not valid when compared to the lower boundary of the same exercise domain (i.e., MLSS).
Keywords: The highest intensity; maximal lactate steady-state; VO2max; VO2peak
- Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117-30. [Crossref] [PubMed]
- Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc. 1996;28(2):241-6. [Crossref] [PubMed]
- Caputo F, Denadai BS. The highest intensity and the shortest duration permitting attainment of maximal oxygen uptake during cycling: effects of different methods and aerobic fitness level. Eur J Appl Physiol. 2008;103(1):47-57. [Crossref] [PubMed]
- Hill DW, Poole DC, Smith JC. The relationship between power and the time to achieve. VO(2max). Med Sci Sports Exerc. 2002;34(4):709-14. [Crossref] [PubMed]
- Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24:35-71. [Crossref] [PubMed]
- Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1-15. [Crossref] [PubMed]
- Cohen J. Statistical power analysis. Current Directions in Psychological Science. 1992;1:98-101. [Crossref]
- Midgley AW, Mc Naughton LR. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46(1):1-14. [PubMed]
- Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313-38. [Crossref] [PubMed]
- Colakoglu M, Ozkaya O, Balci GA. The importance of the verification phase following an incremental exercise to ensure maximum oxygen consumption. J Sports Med Phys Fitness. 2020;60(10):1342-8. [Crossref] [PubMed]
- Billat VL, Morton RH, Blondel N, Berthoin S, Bocquet V, Koralsztein JP, et al. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. Eur J Appl Physiol. 2000;82(3):178-87. [Crossref] [PubMed]
- Black MI, Jones AM, Bailey SJ, Vanhatalo A. Self-pacing increases critical power and improves performance during severe-intensity exercise. Appl Physiol Nutr Metab. 2015;40(7):662-70. [Crossref] [PubMed]
- de Aguiar RA, Turnes T, de Oliveira Cruz RS, Caputo F. Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise. Eur J Appl Physiol. 2013;113(4):941-9. [Crossref] [PubMed]
- Wakefield BR, Glaister M. Influence of work-interval intensity and duration on time spent at a high percentage of VO2max during intermittent supramaximal exercise. J Strength Cond Res. 2009;23(9):2548-54. [Crossref] [PubMed]
- Ozkaya O, Balci GA, As H, Cabuk R, Norouzi M. Grey zone: a gap between heavy and severe exercise domain. J Strength Cond Res. 2022;36(1):113-20. [Crossref] [PubMed]
- Özkaya Ö, Balcı GA, As H, Cabuk R, Norouzi M. Tek bir seansta zirve oksijen kullanım düzeyini veren en yüksek güç çıktısını tahmin etmenin basit bir yöntemi [A simple method to predict the highest power output to elicit peak oxygen consumption in a single session]. Spor Bilimleri Dergisi. 2019;30(4):168-76. [Crossref]
- Turnes T, de Aguiar RA, de Oliveira Cruz RS, Pereira K, Salvador AF, Caputo F. High-intensity interval training in the boundaries of the severe domain: effects on sprint and endurance performance. Int J Sports Med. 2016;37(12):944-51. [Crossref] [PubMed]
- Turnes T, de Aguiar RA, Cruz RS, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161-9. [Crossref] [PubMed]
- Turnes T, de Aguiar RA, de Oliveira Cruz RS, Lisbôa FD, Pereira KL, Caputo F. Short-term interval training at both lower and higher intensities in the severe exercise domain result in improvements in V̇O₂ on-kinetics. Eur J Appl Physiol. 2016;116(10):1975-84. [Crossref] [PubMed]
- Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265-79. [Crossref] [PubMed]
- Norouzi M. Maksimal oksijen kullanım düzeyini veren farklı iş yükleriyle yapılan kesintili antrenman modellerinin aerobik güç ve anaerobik kapasite geliştirici etkileri [Doktora tezi]. İzmir: Ege Üniversitesi; 2020. Erişim Tarihi: 01.02.2023 Erişim linki: [Link]
- Keir DA, Fontana FY, Robertson TC, Murias JM, Paterson DH, Kowalchuk JM. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932-40. [Crossref] [PubMed]
- Pallarés JG, Lillo-Bevia JR, Morán-Navarro R, Cerezuela-Espejo V, Mora-Rodriguez R. Time to exhaustion during cycling is not well predicted by critical power calculations. Appl Physiol Nutr Metab. 2020;45(7):753-60. [Crossref] [PubMed]
- Dekerle J, Baron B, Dupont L, Vanvelcenaher J, Pelayo P. Maximal lactate steady state, respiratory compensation threshold and critical power. Eur J Appl Physiol. 2003;89(3-4):281-8. [Crossref] [PubMed]
- Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol Occup Physiol. 1990;61(3-4):278-83. [Crossref] [PubMed]
- Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85(1-2):19-26. [Crossref] [PubMed]
- Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197-203. [Crossref] [PubMed]
- Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during cycling. Eur J Appl Physiol. 2002;88(3):214-26. [Crossref] [PubMed]
- Bader DS, Maguire TE, Balady GJ. Comparison of ramp versus step protocols for exercise testing in patients > or = 60 years of age. Am J Cardiol. 1999;83(1):11-4. [Crossref] [PubMed]
- Boone J, Koppo K, Bouckaert J. The VO2 response to submaximal ramp cycle exercise: Influence of ramp slope and training status. Respir Physiol Neurobiol. 2008;161(3):291-7. [Crossref] [PubMed]
.: Process List