Hidrojeller, hidrofilik homopolimer veya kopolimer ağlardan oluşan, su ve biyolojik sıvıları tutarak şişen yapılardır. Önemli özelliklerinden biri, şişme öncesi ve sonrası şekillerini koruyabilmeleridir. Hidrojeller uyarıya duyarlılıklarına göre klasik ve uyarıya duyarlı olarak ikiye ayrılırlar. Uyarıya duyarlı, diğer bir deyişle akıllı hidrojeller pH, sıcaklık ya da diğer çevresel uyarılara tepki verirken; klasik hidrojeller bu değişikliklerden etkilenmezler. Sıcaklığa duyarlılık gösteren hidrojeller ile toksik olmayan yapıları, kolay formülasyonları, fizyolojik ortamlarda şişme özellikleri, sıcaklık değişimiyle çözelti-jel geçişinin geri dönüşlü olması gibi cazip özellikleri nedeniyle kontrollü salım sağlamak amacıyla birçok çalışma yapılmıştır. Sıcaklık duyarlılığı gösteren polimerler, belirli bir sıcaklığın altında ve üstünde oluşlarına göre şişme ve büzülme davranışı gösterirler. Düşük kritik çözücü sıcaklığı olarak adlandırılan bu sıcaklık, ilacın hidrojelden geciktirilmiş, lokal ya da uzatılmış salımı için geliştirilen formülasyonlarda en önemli parametredir. İlaçlar hidrojeller içerisine hapsedildiğinde kontrollü salınabilir veya bölgeye hedeflendirilebilir. Böylelikle etken maddelerin yan etkileri azaltılıp etkinlikleri artırılabilir. Kitozan, poli (organofosfazen), poloksamer, pluronik gibi polimerler sıcaklık duyarlı kontrollü salım formülasyonlarında kullanılmaktadır. Bu polimerlerden bazıları kendiliğinden sıcaklık duyarlılığına sahipken bazıları çeşitli modifikasyonlarla sıcaklık duyarlılığı kazanmıştır. Bu çalışmada, antikanser, antiinflamatuar/analjezik ve antimikrobiyal ilaçların, proteinlerin, doku yenilenmesi için kullanılan faktörlerin ve hücrelerin sıcaklık duyarlı hidrojellerden kontrollü salımları ve hedeflendirilmeleri için geliştirilen formülasyonlardan bahsedilerek, gelecek vadeden uygulamalar ele alınmıştır.
Anahtar Kelimeler: Sıcaklık duyarlı hidrojeller; kontrollü salım; ilaç uygulamaları
Hydrogels are hydrophilic homopolymer or copolymer networks, which are swollen absorbing water and biological fluids. One of the important features is that they can preserve their shape before and after swelling. Hydrogels are divided into two groups according to their sensitivities. Stimuli- sensitive, ie, intelligent hydrogels react to pH, temperature or other environmental stimuli, while conventional hydrogels are unaffected by these changes. Many studies have been conducted to provide controlled release with temperature responsive hydrogels due to their attractive properties such as non-toxic structures, easy formulations, swelling properties in physiological environment and the reversibility of the solution-gel transition with temperature change. Temperature-sensitive polymers exhibit swelling and shrinkage behavior in relation to being above or below a certain temperature. This temperature, called low critical solution temperature, is the most important parameter in the formulations developed for delayed, local or extended release of the drug from the hydrogel. Polymers such as Chitosan, poly (organophosphazen), poloxamer, pluronic are used in temperature sensitive controlled release formulations. These polymers could be used directly or after some modifications to get thermoresponsibility. In this review, promising applications of controlled release of anticancer, anti-inflammatory/analgesic, antimicrobial drugs, proteins and factors used for tissue regeneration from temperature-sensitive hydrogels are discussed.
Keywords: Temperature sensitive hydrogels; controlled release; drug applications
- Jeong B, Kim SW, Bae YH. Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154-62. [Crossref]
- Samchenko Y, Ulberg Z, Korotych O. Multipurpose smart hydrogel systems. Adv Colloid Interface Sci. 2011;168(1-2):247-62. [Crossref] [PubMed]
- Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27-46. [Crossref]
- Tokuyama H, Kato Y. Preparation of thermosensitive polymeric organogels and their drug release behaviors. European Polymer Journal. 2010;46(2):277-82. [Crossref]
- van Midwoud PM, Sandker M, Hennink WE, de Leede LGJ, Chan A, Weinans H. In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration. Eur J Pharm Biopharm. 2018;131:170-7. [Crossref] [PubMed]
- Ganji F, Vasheghani FE. Hydrogels in controlled drug delivery systems. Iranian Polymer Journal. 2009;18(1):63-88.
- Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58(12-13):1379-408. [Crossref] [PubMed]
- Ozturk V, Okay O. Temperature sensitive poly (N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. Polymer. 2002;43(18):5017-26. [Crossref] >
- Li Z, Guan J. Thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv. 2011;8(8):991-1007. [Crossref] [PubMed]
- Grassi G, Farra R, Caliceti P, Guarnieri G, Salmaso S, Carenza M, et al. Potential therapeutic applications. Am J Drug Delivery. 2005;3:239-51. [Crossref]
- Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm. 2004;57(1):53-63. [Crossref]
- Cho JK, Hong KY, Park JW, Yang HK, Song SC. Injectable delivery system of 2-methoxyestradiol for breast cancer therapy using biodegradable thermosensitive poly (organophosphazene) hydrogel. J Drug Target. 2011;19(4):270-80. [Crossref] [PubMed]
- Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels for sustained release of a PEGylated drug. Int J Pharm. 2008;348(1-2):95-106. [Crossref] [PubMed]
- Purushotham S, Ramanujan RV. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010;6(2):502-10. [Crossref] [PubMed]
- Chan BQY, Cheng H, Liow SS, Dou Q, Wu YL, Loh X, et al. Poly (carbonate urethane)-based thermogels with enhanced drug release efficacy for chemotherapeutic applications. Polymers (Basel). 2018;10(1):89. [Crossref] [PubMed] [PMC]
- Shi K, Xue B, Jia Y, Yuan L, Han R, Yang F, et al. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Research. 2019;12(6):1389-99. [Crossref]
- Bardajee GR, Hooshyar Z. A novel thermo-sensitive nanogel composing of poly(N-isopropylacrylamide) grafted onto alginate-modified graphene oxide for hydrophilic anticancer drug delivery. Journal of the Iranian Chemical Society. 2018;15(1):121-9. [Crossref]
- Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm. 2001;212(2):289-93. [Crossref]
- Wu J, Wei W, Wang LY, Su ZG, Ma GH. A thermosensitive hydrogel based on quaternized chitosan and poly (ethylene glycol) for nasal drug delivery system. Biomaterials. 2007;28(13):2220-32. [Crossref] [PubMed]
- Wang Q, Zuo Z, Cheung CKC, Leung SSY. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm. 2019;559:86-101. [Crossref] [PubMed]
- Wang X, Zhang Y, Xue W, Wang H, Qiu X, Liu Z. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization. J Biomater Appl. 2017;31(6):923-932. [Crossref] [PubMed]
- Park YJ, Yong CS, Kim HM, Rhee JD, Oh YK, Kim CK, et al. Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel. Int J Pharm. 2003;263(1-2):105-11. [Crossref]
- Niu H, Li X, Li H, Fan Z, Ma J, Guan J. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomater. 2019;83:96-108. [Crossref] [PubMed] [PMC]
- Zhang Y, Yu JK, Ren K, Zuo J, Ding J, Chen X. Thermosensitive hydrogels as scaffolds for cartilage tissue engineering. Biomacromolecules. 2019;20(4):1478-92. [Crossref] [PubMed]
- Oh KS, Song JY, Yoon SJ, Park Y, Kim D, Yuk SH. Temperature-induced gel formation of core/shell nanoparticles for the regeneration of ischemic heart. J Control Release. 2010;146(2):207-11. [Crossref] [PubMed]
- Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, et al. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater. 2010;6(6):1978-91. [Crossref] [PubMed]
- Liang J, Peng X, Zhou X, Zou J, Cheng L. Emerging Applications of Drug Delivery Systems in Oral Infectious Diseases Prevention and Treatment. Molecules 2020;25(3):516. [Crossref] [PubMed]
- Liu X, Gan H, Hu C, Sun W, Zhu X, Meng Z, et al. Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent. Int J Nanomedicine. 2019;14:289-300. [Crossref] [PubMed] [PMC]
- Veyries ML, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B, et al. Controlled release of vancomycin from poloxamer 407 gels. Int J Pharm. 1999;192(2):183-93. [Crossref]
- Chang JY, Oh Y-K, Kong HS, Kim EJ, Jang DD, Nam KT, et al. Prolonged antifungal effects of clotrimazole-containing mucoadhesive thermosensitive gels on vaginitis. J Control Release. 2002;82(1):39-50. [Crossref]
.: Process List