Amaç: Bu araştırma, sağlık alanında öğrenim gören öğrencilerin, sağlıkta yapay zekâ uygulamaları ve ChatGPT farkındalığı, yapay zekâ kullanımına yönelik görüşleri ve teknostres düzeylerinin ve ilişkili faktörlerin incelenmesi amacıyla yapılmıştır. Gereç ve Yöntemler: Araştırmanın örneklemini 485 sağlık hizmetleri meslek yüksekokul öğrencisi (yaş ortalaması: 20,65±3,09 yıl) oluşturmuştur. Öğrencilerin, yapay zekâ ve ChatGPT farkındalık ve görüşleri, literatür taranarak hazırlanan sorularla, teknostres düzeyleri Teknostres Ölçeği ile sağlıkta yapay zekânın kullanımına yönelik farkındalıkları ise Yapay Zekâ Farkındalık Anketi ile değerlendirilmiştir. İki grup arasındaki ölçüm değerlerinin karşılaştırılmasında, bağımlı gruplarda t-testi, ikiden fazla grupta ölçüm değerlerinin karşılaştırılmasında tek yönlü varyans analizi kullanılmıştır. Bulgular: Öğrencilerin %54'ü yapay zekâ teknolojilerinden, %60'ı ChatGPT'den haberdardır, %83'ü yapay zekânın ders müfredatına eklenmesi gerektiğini düşünmektedir. Öğrencilerin teknostres düzeylerinin orta derecede olduğu (ortalama puan: 25,21±10,09), teknostres düzeyinin cinsiyet, sınıf, bölüm ve günlük internet kullanım süresine göre değişmediği bulunmuştur (p>0,05). Öğrencilerin %64'ü yapay zekânın sağlık alanında kullanılması gerektiğini; %83'ü yapay zekâ gibi teknolojik gelişmeleri öğrenmeye ve kullanmaya istekli olduğunu belirtmiştir. Diğer yandan, %45'i yapay zekânın yaygınlaşmasıyla mesleklerinin yok olacağını; %65'i ise yapay zekânın yaygınlaşması ile sağlık çalışanlarına olan ihtiyacın giderek azalacağını düşünmektedir. Sonuç: Öğrencilerde mesleki kaygıların giderilmesi, teknostres düzeyinin kontrolünün sağlanması ve yapay zekâ teknolojileri ve kullanımının benimsenip uygulamaya geçirilebilmesi için ders müfredatlarına, ''Sağlık Hizmetlerinde Dijitalleşme'' veya ''Sağlık Hizmetlerinde Yapay Zekâ'' gibi temaların eklenmesi bu konuda faydalı olabilir. Yapay zekâ teknolojilerinin öğrenilmesi, yeni ve modern sağlık hizmetleri trendlerinin önünü açacaktır.
Anahtar Kelimeler: Yapay zekâ; ChatGPT; teknostres; farkındalık
Objective: This research was conducted to examine the awareness of artificial intelligence applications and ChatGPT in health, their opinions on the use of artificial intelligence, technostress levels and related factors of students studying in the field of health. Material and Methods: The sample of the study consisted of 485 health services vocational high school students (mean age: 20.65±3.09 years). Students' awareness and opinions about artificial intelligence and ChatGPT were evaluated with questions prepared by scanning the literature, their technostress levels were evaluated with the Technostress Scale, and their awareness of the use of artificial intelligence in health was evaluated with the Artificial Intelligence Awareness Survey. To compare measurement values between two groups, t-test was used in dependent groups, and one-way analysis of variance was used to compare measurement values in more than two groups. Results: 54% of the students are aware of artificial intelligence technologies, 60% are aware of ChatGPT, and 83% think that artificial intelligence should be added to the course curriculum. It was found that the technostress levels of the students were moderate (mean score: 25.21±10.09), and the technostress level did not change according to gender, class, department and daily internet usage time (p>0.05). 64% of students think that artificial intelligence should be used in the field of health; 83% stated that they are willing to learn and use technological developments such as artificial intelligence. On the other hand, 45% say their jobs will disappear with the spread of artificial intelligence; 65% think that the need for healthcare workers will gradually decrease with the widespread use of artificial intelligence. Conclusion: Adding themes such as ''Digitalization in Health Services'' or ''Artificial Intelligence in Health Services'' to the course curricula may be useful in order to eliminate Professional concerns in students, control the level of technostress, and adopt and implement artificial intelligence technologies and their use. Learning artificial intelligence technologies will pave the way for new and modern healthcare trends.
Keywords: Artificial intelligence; ChatGPT; technostress; awareness
- Artificial Intelligence [Internet]. © 2024 [Cited: June 22, 2020]. Oxford Reference. Available from: [Link]
- Bengio Y, Lecun Y, Hinton G. Deep learning for AI. Communications of the ACM. 2021;64(7):58-65. [Crossref]
- Huang J, Saleh S, Liu Y. A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies. 2021;10(3):206-17. [Crossref]
- Loeckx J. Blurring boundaries in education: context and impact of MOOCs. International Review of Research in Open and Distributed Learning. 2016;17(3):92-121. [Crossref]
- Cheng K, He Y, Li C, Xie R, Lu Y, Gu S, et al. Talk with ChatGPT About the Outbreak of Mpox in 2022: Reflections and Suggestions from AI Dimensions. Ann Biomed Eng. 2023;51(5):870-4. [Crossref] [PubMed] [PMC]
- Yu H. Reflection on whether Chat GPT should be banned by academia from the perspective of education and teaching. Front Psychol. 2023;14:1181712. [Crossref] [PubMed] [PMC]
- Gherheș V, Obrad C. Technical and humanities students' perspectives on the development and sustainability of artificial intelligence (AI). Sustainability. 2018;10(9):3066. [Crossref]
- Knox J. Artificial intelligence and education in China. Learning. Media and Technology. 2020;45(3):298-311. [Crossref]
- Ijaz K, Bogdanovych A, Trescak T. Virtual worlds vs books and videos in history education. Interactive Learning Environments. 2017;25(7):904-29. [Crossref]
- Sharma S, Gupta B. Investigating the role of technostress, cognitive appraisal and coping strategies on students' learning performance in higher education: a multidimensional transactional theory of stress approach. Information Technology & People. 2023;36(2):626-60. [Crossref]
- Baş M, Balaban F, Balcı S. Üniversite öğrencilerinin teknoloji destekli öğrenme ortamında Teknostres Düzeyleri Ölçeğinin Türkçeye uyarlanması: geçerlik-güvenirlik çalışması [Turkish adaptation of the level of Technostress in the Technology-Supported Learning environment of university students: a validity-reliability study]. EKEV Akademi Dergisi. 2021;25(87):451-70. [Link]
- Wang K, Shu Q, Tu Q. Technostress under different organizational environments: an empirical investigation. Computers in Human Behavior. 2008;24(6):3002-13. [Crossref]
- Atanasoff L, Venable M. Technostress: Implications for adults in the workforce. The Career Development Quarterly. 2017;65(4):326-38. [Crossref]
- Oakden-Rayner L. Reply to 'Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists' by Haenssle et al. Ann Oncol. 2019;30(5):854. Retraction in: Ann Oncol. 2019;30(2):130e. [Crossref] [PubMed]
- Sit C, Srinivasan R, Amlani A, Muthuswamy K, Azam A, Monzon L, et al. Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey. Insights Imaging. 2020;11(1):14. [Crossref] [PubMed] [PMC]
- Mehta N, Harish V, Bilimoria K, Morgado F, Shiphra G, Law M, et al. Knowledge of and attitudes on artificial intelligence in healthcare: a provincial survey study of medical students. Medrxiv. 2021. [Crossref]
- Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175-91. [Crossref] [PubMed]
- Wang X, Tan SC, Li L. Measuring university students' technostress in technology-enhanced learning: scale development and validation. Australasian Journal of Educational Technology. 2020;36(4):96-112. [Crossref]
- Yılmaz Y, Yılmaz Uzelli D, Yıldırım D, Korhan EA, Kaya DÖ. Yapay zekâ ve sağlıkta yapay zekânın kullanımına yönelik sağlık bilimleri fakültesi öğrencilerinin görüşleri [Artificial intelligence and the use of artificial intelligence in health: opinions of health sciences students]. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2021;12(3):297-308. [Crossref]
- Seçer E, Özer Kaya D. Fizyoterapi ve rehabilitasyon öğrencilerinin teknostres düzeyleri, ilişkili faktörler ve sağlıkta yapay zekânın kullanımına yönelik farkındalıkları: kesitsel bir çalışma [Technostress levels of physiotherapy and rehabilitation students, related factors and awareness of the use of artificial intelligence in health: a cross-sectional study]. Turkiye Klinikleri Journal of Health Sciences/Türkiye Klinikleri Sağlık Bilimleri Dergisi. 2024;9(1):127-36. [Crossref]
- Qi C. A double-edged sword? Exploring the impact of students' academic usage of mobile devices on technostress and academic performance. Behaviour & Information Technology. 2019;38(12):1337-54. [Crossref]
- Çalışkan M, Çoklar AN. Öğretmen adaylarının teknostres düzeylerinin belirlenmesi [Determining the technostress levels of teacher candidates]. Anadolu Üniversitesi Eğitim Fakültesi Dergisi. 2022;6(3):341-54. [Crossref]
- Torales J, Torres-Romero AD, Di Giuseppe MF, Rolón-Méndez ER, Martínez-López PL, Heinichen-Mansfeld KV, et al. Technostress, anxiety, and depression among university students: a report from Paraguay. Int J Soc Psychiatry. 2022;68(5):1063-70. [Crossref] [PubMed]
- Erdogan A, Öztürk M, Erdogan P, Zor RK, Çınaroğlu, Öztorun K, et al. Technostress in medical students during pandemic-prompted distance education: adaptation of technostress scale based on person-environment misfit theory. TOJET. 2022;21(3):63-74. [Crossref]
- Kasneci E, Sessler K, Küchemann S, Bannert M, Dementieva D, Fischer F, et al. ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences. 2023;103:102274. [Crossref]
- Gleason N. ChatGPT and the rise of AI writers: How should higher education respond. Times Higher Education. December 9, 2022. [Link]
- Bozkurt A, Sharma RC. Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education. 2020;15(1):1-11. [Link]
- Shoufan A. Exploring students' perceptions of ChatGPT: Thematic analysis and follow-up survey. IEEE Access. 2023(11):38805-18. [Crossref]
- Ali JKM, Shamsan MAA, Hezam TA, Mohammed AA. Impact of ChatGPT on learning motivation: teachers and students' voices. Journal of English Studies in Arabia Felix. 2023;2(1):41-9. [Crossref]
- Tiwari C K, Bhat MA, Khan ST, Subramaniam R, Khan MAI. What drives students toward ChatGPT? An investigation of the factors influencing adoption and usage of ChatGPT. Interactive Technology and Smart Education. 2023;21(3):333-55. [Crossref]
- Ranjana V, Gayathri R, Priya VV, Kavitha S. Awareness on application of artificial intelligence in medicine among dental students-a survey. Annals of the Romanian Society for Cell Biology. 2021;25(23):1137-53. [Link]
- Bisdas S, Topriceanu CC, Zakrzewska Z, Irimia AV, Shakallis L, Subhash J, et al. Artificial intelligence in medicine: a multinational multi-center survey on the medical and dental students' perception. Front Public Health. 2021;9:795284. [Crossref] [PubMed] [PMC]
- Al Saad MM, Shehadeh A, Alanazi S, Alenezi M, Alez AA, Eid H, et al. Medical students' knowledge and attitude towards artificial intelligence: an online survey. The Open Public Health Journal. 2022;15(1):1-8. [Crossref]
- Teng M, Singla R, Yau O, Lamoureux D, Gupta A, Hu Z, et al. Health care students' perspectives on artificial intelligence: countrywide survey in Canada. JMIR Medical Education. 2022;8(1):e33390. [Crossref]
.: Process List