Argon lazer fotokoagülasyon, diyabetik retinopati tedavisinde 40 yılı aşkın süredir kullanılmaktadır ve intravitreal farmakoterapi çağında bile önemli bir tedavi seçeneğidir. Fakat, single-spot argon lazer fotokoagülasyonun bazı önemli yan etki ve kısıtlılıkları bulunmaktadır. Grid lazer gibi düşük parametrelerin uygulandığı bir işlemden sonra bile lazer skarları genişleyerek retinal hasarı artırmaktadır. Eşik altı "diode micropulse laser" ile lazer maruziyeti mikrosaniyelere düşürülerek retinal hasar azaltılmıştır. Pattern Scan Laser (PASCAL) (Santa Clara, CA, ABD) ile tek oturumda, ağrısız panretinal fotokoagülasyon uygulanabilmektedir. Navilas (OD-OS, Inc, Almanya) ile arka kutup ve periferin eş zamanlı renkli fundus, floresein anjiyografi ve optik koherens tomografi görüntüleri alınabilmekte, görüntüler birbirine entegre edilerek hastaya özel tedavi planı oluşturulmakta ve mevcut bulgu ve tedaviler dijital ortamda kayıt edilebilmektedir. Lazer cihazlarındaki elektroteknik gelişmeler ile lazer sistemleri mükemmelleştirilmiş, yardımcı ekipmanların eklenmesi ile daha hızlı, daha konforlu ve daha güvenli hâle gelmiş ve oftalmolojideki uygulama alanları genişlemiştir. Bu çalışmada; retinal fotokoagülasyonun fiziksel ve biyolojik temelleri, güncel uygulama yöntemleri ve teknolojinin yakın gelecekteki evrimine dair bilgilerin verilmesi amaçlanmıştır.
Anahtar Kelimeler: Retinal fotokoagülasyon; diod lazer; pattern lazer; navigasyonlu lazer
Argon laser photocoagulation is used for over 40 years in treatment of diabetic retinopathy and is an important treatment option even in the era of intravitreal pharmocotherapy. However, single-spot argon laser photocoagulation has important side effects and limitation. Even after performing laser with a low-parameter such as grid laser, laser scars enlarge and the retinal damage increases. Laser exposure was reduced to microseconds by subthreshold diode micropulse laser and retinal damage was decreased. Pattern Scan Laser (PASCAL) (Santa Clara, CA, USA) provides painless panretinal photocoagulation in a single session. Navilas (OD-OS, Inc, Germany) can simultaneously obtain color fundus photographs of posterior pole and peripheral retina; can capture images of fluorescent angiography, and optical coherence tomography; plan of patient-specific treatment after integration of images; and records current findings or treatments in digital environment. The system has been perfected with the electrotechnical developments in laser devices, it has become faster, more comfortable and safer after the integration of auxiliary equipments, and the fields of application in ophthalmology have expanded. In this study, we aimed to give information about the physical and biological bases of retinal photocoagulation, current application methods and the evoluation of the technology in near future.
Keywords: Retinal photocoagulation; diode laser; pattern laser; navigated laser
- Meyer-Schwickerath G. [Light coagulation; a method for treatment and prevention of the retinal detachment]. Albert Von Graefes Arch Ophthalmol. 1954;156(1):2-34. [Crossref]
- Meyer-Schwickerath G. Prophylactic treatment of retinal detachment by light-coagulation. Trans Ophthalmol Soc U K. 1956;76:739-50. [PubMed]
- Birngruber R, Hillenkamp F, Gabel VP. Theoretical investigations of laser thermal retinal injury. Health Phys. 1985;48(6):781-96. [Crossref][PubMed]
- Schrarmeyer U, Heimann K. Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res. 1999;12(4):219-36. [Crossref]
- Mainster MA, Ham WT Jr, Delori FC. Potential retinal hazards. Instrument and environmental light sources. Ophthalmology. 1983;90(8):927- 32. [Crossref]
- Priebe LA, Cain CP, Welch AJ. Temperature rise required for production of minimal lesions in the Macaca mulatta retina. Am J Ophthalmol. 1975;79(3):405-13. [Crossref]
- White TJ, Mainster MA, Wilson PW, Tips JH. Chorioretinal temperature increases from solar observation. Bull Math Biophys. 1971;33(1):1-17. [Crossref]
- Brinkmann R, Hüttmann G, Rögener J, Roider J, Birngruber R, Lin CP. Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen. Lasers Surg Med. 2000;27(5):451-64.
- Mainster MA. Wavelength selection in macular photocoagulation. Tissue optics, thermal effects, and laser systems. Ophthalmology. 1986;93(7):952-8. [Crossref]
- Kozak I, Luttrull JK. Modern retinal laser therapy. Saudi J Ophthalmol. 2015;29(2):137-46. [Crossref][PubMed][PMC]
- Graham CE, Binz N, Shen WY, Constable IJ, Rakoczy EP. Laser photocoagulation: ocular research and therapy in diabetic retinopathy. Adv Exp Med Biol. 2006;572:195-200. [Crossref][PubMed]
- Xiao M, Sastry SM, Li ZY, Possin DE, Chang JH, Klock IB, et al. Effects of retinal laser photocoagulation on photoreceptor basic fibroblast growth factor and survival. Invest Ophthalmol Vis Sci. 1998;39(3):618-30. [PubMed]
- Xiao M, McLeod D, Cranley J, Williams G, Boulton M. Growth factor staining patterns in the pig retina following retinal laser photocoagulation. Br J Ophthalmol. 1999;83(6):728-36. [[Crossref][PubMed][PMC]
- Kim JJ, Im JC, Shin JP, Kim IT, Park DH. One- year follow-up of macular ganglion cell layer and peripapillary retinal nerve fiber layer thickness changes after panretinal photocoagulation. Br J Ophthalmol. 2014;98(2):213-7. [Crossref][PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Early Treatment Diabetic Retinopathy Study Report Number 1. Photocoagulation for diabetic macular edema. Arch Oph- thalmol. 1985;103(12):1796-806. [[Crossref][PubMed]
- Schatz H, Madeira D, McDonald HR, Johnson RN. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol. 1991;109(11):1549-51. [Crossref][PubMed]
- Mainster MA. Decreasing retinal photocoagulation damage: principles and techniques. Semin Ophthalmol. 1999;14(4):200-9. [Crossref][PubMed]
- Roider J, Hillenkamp F, Flotte T, Birngruber R. Microphotocoagulation: selective effects of repetitive short laser pulses. Proc Natl Acad Sci U S A. 1993;90(18):8643-7. [Crossref][PubMed][PMC]
- Dorin G. Subthreshold and micropulse diode laser photocoagulation. Semin Ophthalmol. 2003;18(3):147-53. [Crossref][PubMed]
- Luttrull JK, Musch DC, Spink CA. Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye (Lond). 2008;22(5):607-12. [Crossref][PubMed]
- Muqit MM, Marcellino GR, Gray JC, McLauchlan R, Henson DB, Young LB, et al. Pain responses of Pascal 20 ms multi-spot and 100 ms singlespot panretinal photocoagulation: Manchester Pascal Study, MAPASS report 2. Br J Ophthalmol. 2010;94(11):1493-8. [Crossref] [PubMed]
- Reddy S, Hu A, Schwartz SD. Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP). Semin Ophthalmol. 2009;24(1):9-14. [Crossref][PubMed]
- Kim HD, Han JW, Ohn YH, Brinkmann R, Park TK. Functional evaluation using multifocal electroretinogram after selective retina therapy with a microsecond-pulsed laser. Invest Ophthalmol Vis Sci. 2015;56(1):122-31. [Crossref][PubMed]
- Ober MD, Kernt M, Cortes MA, Kozak I. Time required for navigated macular laser photocoagulateion treatment the Navilas. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1049-53. [Crossref[PubMed]
- Kernt M, Cheuteu RE, Cserhati S, Seidensticker F, Liegl RG, Lang J, et al. Pain and accuracy of focal laser treatment for diabetic macular edema using a retinal navigated laser (Navilas). Clin Ophthalmol. 2012;6:289-96. [Crossref][PubMed][PMC]
- Neubauer AS, Langer J, Liegl R, Haritoglu C, Wolf A, Kozak I, et al. Navigated macular laser decreases retreatment rate for diabetic macular edema: a comparison with conventional macular laser. Clin Ophthalmol. 2013;7:121-8. [PubMed][PMC]
- Inan UU, Polat O, Inan S, Yigit S, Baysal Z. Comparison of pain scores between patients undergoing panretinal photocoagulation using navigated or pattern scan laser systems. Arq Bras Ophthalmol. 2016;79(1):15-8. [Crossref]
- Chidlow G, Shibeeb O, Plunkett M, Casson RJ, Wood JP. Glial cell and inflammatory responses to retinal laser treatment: comparison of a conventional photocoagulator and a novel, 3- nanosecond pulse laser. Invest Ophthalmol Vis Sci. 2013;54(3):2319-32. [Crossref] [PubMed]
- Wood JP, Shibeeb O, Plunkett M, Casson RJ, Chidlow G. Retinal damage profiles and neuronal effects of laser treatment: comparison of a conventional photocoagulator and a novel 3- nanosecond pulse laser. Invest Ophthalmol Vis Sci. 2013;54(3):2305-18. [Crossref] [PubMed]
- Casson RJ, Raymond G, Newland HS, Gilhotra JS, Gray TL. Pilot randomized trial of a nanopulse retinal laser versus conventional photocoagulation for the treatment of diabetic macular oedema. Clin Exp Ophthalmol. 2012;40(6):604-10. [Crossref][PubMed]
- Guymer RH, Brassington KH, Dimitrov P, Makayeva G, Plunkett M, Xia W, et al. Nanosecond-laser application in intermediate AMD: 12- mounth results of fundus appearance and macular function. Clin Exp Ophthalmol. 2014;42(5):466-79. [Crossref] [PubMed]
.: Process List