Retinanın en iç tabakasını oluşturan ganglion hücre tabakası, fotoreseptörlerden gelen sinyalleri, optik sinir aracılığı ile beyne iletmektedir. X tipi ganglion hücre, keskin görüş ve renk görmemizden, W tipi ganglion hücre kaba görüşten sorumludur. Ganglion hücresi reseptif alanında, horizontal hücrelerin lateral inhibitör etkisinden dolayı 'Merkez açık-çevre kapalı' organizasyonu vardır. Bu yüzden, ganglion hücrelerinin uyarılması için aydınlığın kontrastlı bir şekle, desene döndürülmesi gereklidir. Retinal ganglion hücre fonksiyonunu değerlendirmede, patern mod elektrofizyolojik testler ve pupillometri (pupillografi), bilgisayarlı görme alanına yardımcı tetkikler olarak kullanılabilmektedir. Elektroretinografide fotopik negatif yanıt (PhNR) dalga amplitüdünde azalma ve patern mod elektroretinogramda N95/P50 oranında düşme, ganglion hücre hasarında benzer tanısal değere sahiptir. Optik sinirler aracılığı ile optik traktusa iletilen sinyallerin bir kısmı retinohipotalamik liflerle, suprakiazmatik nükleusa ve oradan da süperior servikal ganglion aracılığı ile epifize ulaşır. Epifiz bezi; ışıkla olan ilişkisinden, şeklinden, histolojisinden ve mistik özelliklerinen dolayı 'Üçüncü göz' olarak adlandırılmaktadır. Epifiz bezi karanlığa duyarlıdır ve hormon salgılaması ışık ile inhibe olmaktadır. Salgılanan hormonlardan serotonin, mutluluk hormonu olarak bilinirken, melatonin biyolojik ritmimizi düzenleyen hormon olarak, dimetiltriptamin ise ruh molekülü olarak bilinir. Melatoninin göz içi basıncını düşürdüğü, korneal yara iyileşmesini artırdığı ve katarakt gelişimini azalttığı yönünde çalışmalar vardır. Epifiz bezi yaşla ve bazı maddeler tarafından pasifize olmakta ve görevini günümüzde maalesef tam olarak yapamamaktadır. Epifiz bezini tekrar aktive edebilmek için florür gibi zararlı maddelerden uzak durmak, transmeditasyon yapmak gibi önerilerde bulunulmaktadır. Epifiz bezinin histopatolojik olarak çeşitli tipte tümörleri görülebilmektedir. Göz hastalıklarını değerlendirirken retina-epifiz bağlantısı akıllara gelmeli, özellikle çocuklarda göz hareket bozukluklarında epifiz tümörleri unutulmamalıdır.
Anahtar Kelimeler: Dimetiltriptamin; epifiz bezi; melatonin; retinal ganglion hücre
The ganglion cell layer, which forms the innermost layer of the retina, transmits signals coming from the photoreceptors to the brain through the optic nerve. The X-type ganglion cell is responsible for our sharp vision and color vision, the W-type ganglion cell is responsible for coarse vision. In the receptive field of the ganglion cell, there is a 'On center off surround' organization due to the lateral inhibitory effect of horizontal cells. Therefore, in order to stimulate the ganglion cells, it is necessary to rotate the brightness to a contrast-like pattern. In the evaluation of retinal ganglion cell function, pattern mod electrophysiological tests and pupillometry (pupillography) can be used as ancillary tests to the computerized visual field analysis. The decrease in photopic negative response wave amplitude in electroretinography and N95/P50 decrease in pattern mode electroretinography has similar diagnostic value in ganglion cell damage. Some of the signals transmitted to the optic tractus via the optic nerves reach suprachiasmatic nucleus via retinohipothalamic fibers and than from there reach pineal gland via superior cervical ganglion. The pineal gland is called the third eye because of its relationship with light and its histology and mystical features. The pineal gland is sensitive to darkness and hormone secretion is inhibited by light. From secreted hormones, melatonin is known as the hormone that regulates our biological rhythm and dimethyltriptamine as soul molecule while serotonin is known as the hormone of happiness. There are studies suggesting that melatonin reduces intraocular pressure, increases corneal wound healing and reduces cataract development. The pineal gland is passivated by age and some substances and unfortunately does not perform its task nowadays. In order to reactivate the pineal gland, it is recommended to avoid harmful substances such as fluoride and to make trans meditation. Histopathological various types of tumors of the pineal gland can be seen. When evaluating eye diseases, retinal-pineal gland connection should be considered, especially in children with eye movement disorders epiphyseal tumors should not be forgotten.
Keywords: Dimetiltriptamine; pineal gland; melatonin; retinal ganglion cell
- Gündüz K. (1. Bölüm. Retina ve Görme Yolları Anatomi ve Fizyolojisi-Elektrofizyolojik özellikler) Türk Oftalmoloji Derneği Eğitim yayınları. Oküler Elektrofizyoloji. 1. Baskı. İstanbul: Galenos Yayınevi; 2011. p.25-39.
- Guyton AC, Hall JE. The eye: II. Receptor and neural function of the retine. Textbook of Medical Physiology. 9th ed. Pennsylvania W.B. Saunders; 1997. p.637-50.
- Viswanathan S, Frishman LJ, Robson JG, Walters JW. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2001;42(2):514-22.
- Machida S, Raz-Prag D, Fariss RN, Sieving PA, Bush RA. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Invest Ophthalmol Vis. Sci. 2008;49(1):442-52. [Crossref] [PubMed]
- Preiser D, Lagrèze WA, Bach M, Poloschek CM. Photopic negative response versus pattern electroretinogram in early glaucoma. Invest Ophthalmol Vis Sci. 2013;54(2):1182-91. [Crossref] [PubMed]
- Periman LM, Ambrosio R Jr, Harrison DA, Wilson SE. Correlation of pupil sizes measured with a mesopic infrared pupillometer and a photopic topographer. J Refract Surg. 2003;19(5):555-9.
- Wilhelm H, Wilhelm B. Clinical applications of pupillography. J Neuroophthalmol.
- Thompson HS, Kardon RH. Irene E. Loewenfeld, PhD physiologist of the pupil. J Neuro-ophthalmol. 2006;26(2):139-48. [Crossref] [PubMed]
- Aktas Z, Ozmen C, Gocun P, Degim Z, Ozkan Y, Onol M, et al. Retinal ganglion cell protection via topical and systemic alpha tocopherol administration in optic nerve crush model of rat. Turk J Ophthalmol. 2013;43(6):161-6. [Crossref]
- Parisi V, Oddone F, Ziccardi L, Roberti G, Coppola G, Manni G. Citicoline and retinal ganglion cells: effects on morphology and function. Curr Neuropharmacol. 2018;16(7): 919-32. [Crossref] [PubMed] [PMC]
- Demir ST, Oba ME, Erdogan ET, Odabasi M, Dirim AB, Demir M, et al. Comparison of pattern electroretinography and optical coherence tomography parameters in patients with primary open-angle glaucoma and ocular hypertension. Turk J Ophthalmol. 2015;45(6): 229-34. [Crossref] [PubMed] [PMC]
- Gunduz MK. [Electrophysiological testing in glaucoma]. Turkiye Klinikleri J Ophthalmol-Special Topics. 2018;11(1):9-14.
- Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. The functional diversity of retinal ganglion cells in the mouse. Nature. 2016;529(7586):345-50. [Crossref] [PubMed] [PMC]
- Lokhorst GJ, Kaitaro TT. The originality of Descartes' theory about the pineal gland. J Hist Neurosci. 2001;10(1):6-18. [Crossref] [PubMed]
- Carr C, O'Neill BE, Hochhalter CB, Strong MJ, Ware ML. Biomarkers of pineal region tumors: a review. Ochsner J. 2019;19(1):26-31. [Crossref] [PubMed] [PMC]
- Şener G. [Hormone of darkness: melatonin]. Marmara Eczacılık Dergisi. 2010;14:112-20. [Crossref]
- Dere F. (Bölüm 3. MSS'nin Temel Yapısal ve Fonksiyonel Organizasyonu). Atlaslı Nöroanatomi Fonksiyonel Nöroloji. 4. Baskı. Adana: Nobel Kitabevi; 2012. p.304-10.
- Sapède D, Cau E. The pineal gland from development to function. Curr Top Dev Biol. 2013;106:171-215. [Crossref] [PubMed]
- Yıldırım M. (Bölüm 8. Diencephalon (Arabeyin). Temel Nöroanatomi. 1.Baskı. İstanbul: Nobel Kitabevi; 2000. p.90-1.
- Orcan CG, Nas OF, Cavusoglu IG, Alan O, Kiliç H, Uyguc AU, et al. [The incidence and co-existence of physiological pineal gland, choroid plexus and habenular commissure calcifications detected in cranial computed tomography]. SETB. 2010;44(1):22-6.
- Daghighi MH, Rezaei V, Zarrintan S, Pourfathi H. Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran. Folia Morphol (Warsz). 2007;66(2):115-9.
- Tan DX, Xu B, Zhou X, Reiter RJ. Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland. Molecules. 2018;23(2): 301. [Crossref] [PubMed] [PMC]
- Messina G, Anania S, Bonomo C, Veneroni L, Andreoli A, Mameli F, et al. The importance of spirituality in supportive care. Int J Yoga. 2011;4(1):33-8. [Crossref] [PubMed] [PMC]
- Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102(2):99-108. [Crossref] [PubMed]
- Zawilska JB, Nowak JZ. Regulatory mechanisms in melatonin biosynthesis in retina. Neurochem Int. 1992;20(1):23-36. [Crossref]
- Dubocovich ML. Melatonin is a potent modulator of dopamine release in the retina. Nature. 1983;306(5945):782-4. [Crossref] [PubMed]
- Serle JB, Wang RF, Peterson WM, Plourde R, Yerxa BR. Effect of 5‐MCA‐NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma. 2004;13(5):385-8. [Crossref] [PubMed]
- Ciuffi M, Pisanello M, Pagliai G, Raimondi L, Franchi-Micheli S, Cantore M, et al. Antioxidant protection in cultured corneal cells and whole corneas submitted to UV‐B exposure. J Photochem Photobiol B. 2003;71(1-3):59-68. [Crossref] [PubMed]
- Anwar MM, Moustafa MA. The effect of melatonin on eye lens of rats exposed to ultraviolet radiation. Comp Biochem Physiol C Toxicol Pharmacol. 2001;129(1):57-63. [Crossref]
- Abbott KS, Queener HM, Ostrin LA. The ipRGC‐driven pupil response with light exposure, refractive error, and sleep. Optom Vis Sci. 2018;95(4):323-31. [Crossref] [PubMed] [PMC]
- Reid KJ, Abbott SM. Jet lag and shift work disorder. Sleep Med Clin. 2015;10(4):523-35. [Crossref] [PubMed]
- Reiter RJ, Tan DX, Erren TC, Fuentes-Broto L, Paredes SD. Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis. Integr Cancer Ther. 2009;8(4):354-60. [Crossref] [PubMed]
- Feychting M, Osterlund B, Ahlbom A. Reduced cancer incidence among the blind. Epidemiology. 1998;9(5):490-4. [Crossref] [PubMed]
- Dos Santos RG, Osório FL, Crippa JAS, Hallak JEC. Classical hallucinogens and neuroimaging: a systematic review of human studies: hallucinogens and neuroimaging. Neurosci Biobehav Rev. 2016;71:715-28. [Crossref] [PubMed]
- Rodrigues AV, Almeida FJ, Vieira-Coelho MA. Dimethyltryptamine: endogenous role and therapeutic potential. J Psychoactive Drugs. 2019;25:1-12.
- Bruce JN, Ogden AT. Surgical strategies for treating patients with pineal region tumors. J Neurooncol. 2004;69(1-3):221-36. [Crossref] [PubMed]
- Bruce JN, Stein BM. Surgical management of pineal region tumors. Acta Neurochir (Wien). 1995;134(3-4):130-5. [Crossref] [PubMed]
- Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. [Crossref] [PubMed] [PMC]
- Bruce JN. Pineal tumors. In: Winn RH, Youmans JR, eds. Youman's Neurological Surgery. Vol 1. 5th ed. Philadelphia: WB Saunders; 2004. p.1011-29.
- Sakata E, Nakaigawa K, Itoh Y, Takahashi K. Sylvian aqueduct syndrome. Chronology of tumors in the pineal region in view of ocular movement. Auris Nasus Larynx. 1984;11(2): 101-8. [Crossref]
- Fetelli MR, Stein BM. Neuroendocrin aspects of pineal tumors. Neurol Clin. 1986;4(4):877-905. [Crossref]
- Osorio DS, Allen JC. Management of CNS germinoma. CNS Oncol. 2015;4(4):273-9. [Crossref] [PubMed] [PMC]
- Kang JK, Jeun SS, Hong YK, Park CK, Son BC, Lee IW, et al. Experience with pineal region tumors. Childs Nerv Syst. 1998;14(1-2): 63-8. [Crossref] [PubMed]
- Hart MG, Sarkies NJ, Santarius T, Kirollos RW. Ophthalmological outcome after resection of tumors based on the pineal gland. J Neurosurg. 2013;119(2):420-6. [Crossref] [PubMed]
- Wu W, Scott DE, Reiter RJ. Transplantation of the mammalian pineal gland: studies of survival, revascularization, reinnervation, and recovery of function. Exp Neurol. 1993;122(1): 88-99. [Crossref] [PubMed]
- Wu W, Scott DE, Reiter RJ. No difference in a day-night serum melatonin concentration after pineal grafting into the third cerebral ventricle of pinealectomized rats. J Pineal Res. 1991;11(2):70-4. [Crossref] [PubMed]
- Servière J, Gendrot G, LeSauter J, Silver R. Host resets phase of grafted SCN: influence of implant site, tissue specificity and pineal secretion. Neurosci Lett. 1994;176(1):80-4. [Crossref]
.: Process List