Low-load resistance exercise with blood flow restriction has been known to stimulate muscle development that is comparable to conventional High-load Resistance Exercise. Resistance exercise with blood flow restriction is a pretty new training technique that can be an option to High-load Resistance Exercise for increasing muscle mass and strength not only in athletes but also in healthy people and elderly people, or rehabilitation for injured athletes with load restrictions. This brief review study aims to summarize the existing literature concerning the basic principles of resistance exercise with blood flow restriction and to provide a brief description of blood flow restriction training to maximize strength and hypertrophy. Blood flow restriction training can be performed when High-load Resistance Exercise is not tolerated because of pain or other contraindications such as absolute weight-bearing restrictions, for instance after surgical procedures to regain strength and muscle mass. High-load Resistance Exercise is associated with high mechanical tension, however in some cases, this is not warranted. In these cases, resistance exercise with blood flow restriction seems to be a better option. Consequently, blood flow restriction training should not replace High-load Resistance Exercise for the general public or uninjured athletes, but blood flow restriction training can be used as an alternating training tool or in situations where High-load Resistance Exercise is inadvisable.
Keywords: Blood flow restriction; hypertrophy; resistance training; Kaatsu; occlusion
Kan akışı kısıtlama ile birlikte kombine olarak yapılan düşük yüklü direnç egzersizlerinin, geleneksel yüksek yüklü direnç egzersizleri ile karşılaştırılabilir kas büyümesi sağladığı gösterilmiştir. Kan akışı kısıtlama antrenmanı, sadece sporcularda değil, aynı zamanda sağlıklı insanlarda, yaşlı erişkinlerde veya yüksek yüklü antrenmanlara bağlı yaralanma sorunları olan sporcularda kas boyutunu ve kuvvetini geliştirmek için yüksek yüklü direnç antrenmanına alternatif olabilecek oldukça yeni bir antrenman tekniğidir. Bu kısa derleme çalışması, kan akışı kısıtlama antrenmanının temel ilkeleri ile ilgili mevcut literatürü özetlemeyi ve kuvvet ve hipertrofiyi en üst düzeye çıkarmak için kan akışı kısıtlama antrenmanının kısa bir tanımını sağlamayı amaçlamaktadır. Kan akışı kısıtlama antrenmanı, yüksek yüklü direnç antrenmanlarının tolere edilemediği durumlarda, kuvvet ve hipertrofi kazandırmak amacıyla yapılabilir. Kan akışı kısıtlama antrenmanı, ağrı veya ağırlık kaldıramama kısıtlamaları gibi diğer kontraendikasyonlar nedeniyle yüksek yüklü direnç egzersizleri tolere edilmediğinde, örneğin kuvvet ve kas kütlesini yeniden kazanmak için cerrahi prosedürlerden sonra yapılabilir. Yüksek yüklü direnç egzersizleri yüksek mekanik gerilim ile ilişkilidir, ancak bazı durumlarda yüksek yükü tolere etmek mümkün olmayabilir, bu gibi durumlarda kan akışı kısıtlamalı direnç egzersizi iyi bir seçenek olarak görülebilir. Sonuç olarak, kan akışı kısıtlama antrenman metodu, genel popülasyon ve sakatlık geçirmemiş sporcular için yüksek yüklü direnç egzersizlerinin yerini almamalıdır, ancak kan akışı kısıtlama antrenmanı, alternatif bir antrenman aracı olarak veya yüksek yüklü direnç egzersizlerinin tavsiye edilmediği durumlarda kullanılabilir.
Anahtar Kelimeler: Kan akışı kısıtlama; hipertrofi; direnç antrenmanı; Kaatsu; oklüzyon
- Patterson SD, Hughes L, Warmington S, Burr J, Scott BR, Owens J, et al. Blood flow restriction exercise: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. Erratum in: Front Physiol. 2019;10:1332. [Crossref] [PubMed] [PMC]
- Pope ZK, Willardson JM, Schoenfeld BJ. Exercise and blood flow restriction. J Strength Cond Res. 2013;27(10):2914-26. [Crossref] [PubMed]
- Sato Y. The history and future of KAATSU training. Int J Kaatsu Training Res. 2005;1(1):1-5. [Crossref]
- Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406-12. [Crossref] [PubMed]
- Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985). 2000;88(6):2097-106. [Crossref] [PubMed]
- Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men. J Sports Sci Med. 2010;9(3):452-8. [PubMed] [PMC]
- Ishii N, Madarame H, Odagiri K, Naganuma M, Shinoda K. Circuit training without external load induces hypertrophy in lower-limb muscles when combined with moderate venous occlusion. International Journal of KAATSU Training Research. 2005;1(1):24-8. [Crossref]
- Kacin A, Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand J Med Sci Sports. 2011;21(6):e231-41. [Crossref] [PubMed]
- Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86(4):308-14. [Crossref] [PubMed]
- Yasuda T, Abe T, Sato Y, Midorikawa T, Kearns K, Inoue CF, et al. Muscle fiber cross-sectional area is increased after two weeks of twice-daily KAATSU-resistance training. International Journal of KAATSU Training Research. 2005;1(2):65-70. [Crossref]
- Fujita T, WF B, Kurita K, Sato Y, Abe T. Increased muscle volume and strength following six days of low-intensity resistance training with restricted muscle blood flow. International Journal of KAATSU Training Research. 2008;4(1):1-8. [Crossref]
- Madarame H, Neya M, Ochi E, Nakazato K, Sato Y, Ishii N. Cross-transfer effects of resistance training with blood flow restriction. Med Sci Sports Exerc. 2008;40(2):258-63. [Crossref] [PubMed]
- Shinohara M, Kouzaki M, Yoshihisa T, Fukunaga T. Efficacy of tourniquet ischemia for strength training with low resistance. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):189-91. [Crossref] [PubMed]
- Korkmaz E, Dönmez G, Uzuner K, Babayeva N, Torgutalp ŞŞ, Özçakar L. Effects of blood flow restriction training on muscle strength and architecture. J Strength Cond Res. 2020. [Crossref] [PubMed]
- Vechin FC, Libardi CA, Conceição MS, Damas FR, Lixandrão ME, Berton RP, et al. Comparisons between low-intensity resistance training with blood flow restriction and high-intensity resistance training on quadriceps muscle mass and strength in elderly. J Strength Cond Res. 2015;29(4):1071-6. [Crossref] [PubMed]
- Counts BR, Dankel SJ, Barnett BE, Kim D, Mouser JG, Allen KM, et al. Influence of relative blood flow restriction pressure on muscle activation and muscle adaptation. Muscle Nerve. 2016;53(3):438-45. [Crossref] [PubMed]
- Abe T, Kawamoto K, Yasuda T, Kearns CF, Midorikawa T, Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. International Journal of KAATSU Training Research. 2005;1(1):19-23. [Crossref]
- Yamanaka T, Farley RS, Caputo JL. Occlusion training increases muscular strength in division IA football players. J Strength Cond Res. 2012;26(9):2523-9. [Crossref] [PubMed]
- Takarada Y, Takazawa H, Ishii N. Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc. 2000;32(12):2035-9. [Crossref] [PubMed]
- Rolnick N, Schoenfeld BJ. Blood flow restriction training and the physique athlete: a practical research-based guide to maximizing muscle size. Strength & Conditioning Journal. 2020;42(5):22-36. [Crossref]
- Mouser JG, Laurentino GC, Dankel SJ, Buckner SL, Jessee MB, Counts BR, et al. Blood flow in humans following low-load exercise with and without blood flow restriction. Appl Physiol Nutr Metab. 2017;42(11):1165-71. [Crossref] [PubMed]
- Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. Effects of low-intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clin Physiol Funct Imaging. 2010;30(5):338-43. [Crossref] [PubMed]
- Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, You JS, et al. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol. 2011;589(Pt 22):5485-501. [Crossref] [PubMed] [PMC]
- Schoenfeld BJ. Science and Development of Muscle Hypertrophy. 2nd ed. USA: Human Kinetics; 2020.
- Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):2857-72. [Crossref] [PubMed]
- Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ. Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985). 2019;126(1):30-43. [Crossref] [PubMed]
- Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH, et al. A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging. 2012;35(3):686-95. [Crossref] [PubMed]
- Loenneke JP, Pujol TJ. The use of occlusion training to produce muscle hypertrophy. Strength & Conditioning Journal. 2009;31(3):77-84. [Crossref]
- Lasevicius T, Ugrinowitsch C, Schoenfeld BJ, Roschel H, Tavares LD, De Souza EO, et al. Effects of different intensities of resistance training with equated volume load on muscle strength and hypertrophy. Eur J Sport Sci. 2018;18(6):772-80. [Crossref] [PubMed]
- Schoenfeld BJ. Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Med. 2013;43(3):179-94. [Crossref] [PubMed]
- Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42-97. [PubMed]
- Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441-53. [Crossref] [PubMed]
- Baroni BM, Pompermayer MG, Cini A, Peruzzolo AS, Radaelli R, Brusco CM, et al. Full range of motion induces greater muscle damage than partial range of motion in elbow flexion exercise with free weights. J Strength Cond Res. 2017;31(8):2223-30. [Crossref] [PubMed]
- Bloomquist K, Langberg H, Karlsen S, Madsgaard S, Boesen M, Raastad T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur J Appl Physiol. 2013;113(8):2133-42. [Crossref] [PubMed]
- Noorkõiv M, Nosaka K, Blazevich AJ. Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. J Sports Sci. 2015;33(18):1952-61. [Crossref] [PubMed]
- Finni T, Ikegawa S, Lepola V, Komi PV. Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Acta Physiol Scand. 2003;177(4):483-91. [Crossref] [PubMed]
- Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. J Strength Cond Res. 2013;27(11):3068-75. [Crossref] [PubMed]
- Karabulut M, Abe T, Sato Y, Bemben MG. The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol. 2010;108(1):147-55. [Crossref] [PubMed]
- Spranger MD, Krishnan AC, Levyæ PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol. 2015;309(9):H1440-52. [Crossref] [PubMed] [PMC]
- Barnett BE, Dankel SJ, Counts BR, Nooe AL, Abe T, Loenneke JP. Blood flow occlusion pressure at rest and immediately after a bout of low load exercise. Clin Physiol Funct Imaging. 2016;36(6):436-40. [Crossref] [PubMed]
- Patterson SD, Leggate M, Nimmo MA, Ferguson RA. Circulating hormone and cytokine response to low-load resistance training with blood flow restriction in older men. Eur J Appl Physiol. 2013;113(3):713-9. [Crossref] [PubMed]
- Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol. 2016;116(4):749-57. [Crossref] [PubMed]
- Manini TM, Yarrow JF, Buford TW, Clark BC, Conover CF, Borst SE. Growth hormone responses to acute resistance exercise with vascular restriction in young and old men. Growth Horm IGF Res. 2012;22(5):167-72. [Crossref] [PubMed] [PMC]
- Gorgey AS, Timmons MK, Dolbow DR, Bengel J, Fugate-Laus KC, Michener LA, et al. Electrical stimulation and blood flow restriction increase wrist extensor cross-sectional area and flow meditated dilatation following spinal cord injury. Eur J Appl Physiol. 2016;116(6):1231-44. [Crossref] [PubMed]
- Abe T, Sakamaki M, Fujita S, Ozaki H, Sugaya M, Sato Y, et al. Effects of low-intensity walk training with restricted leg blood flow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther. 2010;33(1):34-40. [PubMed]
- Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, et al. Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol. 2009;587(Pt 7):1535-46. [Crossref] [PubMed] [PMC]
- Teramoto M, Golding LA. Low-intensity exercise, vascular occlusion, and muscular adaptations. Res Sports Med. 2006;14(4):259-71. [Crossref] [PubMed]
- Loenneke JP, Fahs CA, Rossow LM, Sherk VD, Thiebaud RS, Abe T, et a l. Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur J Appl Physiol. 2012;112(8):2903-12. [Crossref] [PubMed] [PMC]
- Jessee MB, Buckner SL, Dankel SJ, Counts BR, Abe T, Loenneke JP. The influence of cuff width, sex, and race on arterial occlusion: implications for blood flow restriction research. Sports Med. 2016;46(6):913-21. [Crossref] [PubMed]
- Hughes L, Jeffries O, Waldron M, Rosenblatt B, Gissane C, Paton B, et al. Influence and reliability of lower-limb arterial occlusion pressure at different body positions. PeerJ. 2018;6:e4697. [Crossref] [PubMed] [PMC]
- McEwen JA, Owens JG, Jeyasurya J. Why is it crucial to use personalized occlusion pressures in blood flow restriction (BFR) rehabilitation? Journal of Medical and Biological Engineering. 2019;39(2):173-7. [Crossref]
.: Process List