Objective: High blood pressure is a serious health condition. Patients and clinicians need tools to early detect deviations from normal blood pressure. Adapting modern methods of monitoring to blood pressure monitoring (BPM) has been a favorable solution. This study focuses on adaptation of machine learning to BPM. The daily chrono-biological changes effect blood pressure and may lead to false alarms in an early detection system. We provide an approach that detects changes in blood pressure with limited baseline data. Material and Methods: Our approach uses random forest as an alternative to traditional process monitoring algorithms which test each data point compared to a baseline dataset. In addition, our method converts testing problem into a supervised learning problem using a sliding baseline. We used real data and synthetic data to show the potential of the proposed method for different types of hypertension: sisto-diastolic hypertension, isolated diastolic hypertension and white coat effect. Results: Our observations support that the method can detect various patterns such as sisto-diastolic hypertension, isolated diastolic hypertension and white coat effect successfully. Conclusion: We described the development of a machine learning based monitoring approach to early detect changes in blood pressure. The proposed method (1) requires relatively small baseline data, (2) can be adapted to realtime patient data, and (3) can detect various types of hypertension.
Keywords: Machine learning; blood pressure; process monitoring; random forest
Amaç: Yüksek tansiyon ciddi bir sağlık durumudur. Hastalar ve klinisyenler, normal kan basıncından sapmaları erken tespit etmek için araçlara ihtiyaç duyarlar. Modern izleme yöntemlerini kan basıncı izlemesine [blood pressure monitoring (BPM)] uyarlamak olumlu bir çözüm olmuştur. Bu çalışma, makine öğreniminin BPM'ye uyarlanmasına odaklanmaktadır. Günlük krono-biyolojik değişiklikler kan basıncını etkiler ve erken tespit sisteminde yanlış alarmlara neden olabilir. Sınırlı temel verilerle kan basıncındaki değişiklikleri tespit eden bir yaklaşım sunuyoruz. Gereç ve Yöntemler: Yaklaşımımız, her veri noktasını bir temel veri kümesiyle karşılaştıran geleneksel süreç izleme algoritmalarına alternatif olarak rassal ormanı kullanır. Bunun yanında, bizim yöntemimiz, kayan bir taban çizgisi kullanarak test problemini denetimli bir öğrenme problemine dönüştürür. Farklı hipertansiyon türleri için önerilen yöntemin potansiyelini göstermek için gerçek veriler ve sentetik veriler kullandık: sisto-diyastolik hipertansiyon, izole diyastolik hipertansiyon ve beyaz önlük etkisi. Bulgular: Gözlemlerimiz, yöntemin sisto-diyastolik hipertansiyon, izole diyastolik hipertansiyon ve beyaz önlük etkisi gibi çeşitli paternleri başarılı bir şekilde saptayabildiğini desteklemektedir. Sonuç: Kan basıncındaki değişiklikleri erken tespit etmek için makine öğrenimine dayalı bir izleme yaklaşımının geliştirilmesini tanımladık. Önerilen yöntem; (1) nispeten küçük temel veriler gerektirir, (2) gerçek zamanlı hasta verilerine uyarlanabilir ve (3) çeşitli hipertansiyon türlerini tespit edebilir.
Anahtar Kelimeler: Makine öğrenmesi; kan basıncı; süreç izleme; rassal orman
- Wolf-Maier K, Cooper RS, Kramer H, Banegas JR, Giampaoli S, Joffres MR, et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension. 2004;43(1):10-7. [Crossref] [PubMed]
- Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217-23. [Crossref] [PubMed]
- Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al; Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42(6):1206-52. [Crossref] [PubMed]
- Zhou D, Xi B, Zhao M, Wang L, Veeranki SP. Uncontrolled hypertension increases risk of all-cause and cardiovascular disease mortality in US adults: the NHANES III Linked Mortality Study. Sci Rep. 2018;8(1):9418. [Crossref] [PubMed] [PMC]
- Saiz LC, Gorricho J, Garjón J, Celaya MC, Erviti J, Leache L. Blood pressure targets for the treatment of people with hypertension and cardiovascular disease. Cochrane Database Syst Rev. 2020;9(9):CD010315. [Crossref] [PubMed] [PMC]
- Dogu E, Kim MJ. Self-starting single control charts for multivariate processes: a comparison of methods. Production. 2020;30:e20190136. [Crossref]
- Breiman L. Random forests. Machine Learning. 2001;45(1):5-32. [Crossref]
- O'Brien E. Sleepers versus nonsleepers: another twist to the dipper/nondipper concept. Hypertension. 2007;49(4):769-70. [Crossref] [PubMed]
- Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, et al. Nighttime blood pressure measured by home blood pressure monitoring as an independent predictor of cardiovascular events in general practice. Hypertension. 2019;73(6):1240-8. [Crossref] [PubMed] [PMC]
- Kario K, Shin J, Chen CH, Buranakitjaroen P, Chia YC, Divinagracia R, et al. Expert panel consensus recommendations for ambulatory blood pressure monitoring in Asia: The HOPE Asia Network. J Clin Hypertens (Greenwich). 2019;21(9):1250-83. [Crossref] [PubMed] [PMC]
- Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G, et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2007;28(12):1462-536. [PubMed]
- Owens P, Lyons S, O'Brien E. Ambulatory blood pressure in the hypertensive population: patterns and prevalence of hypertensive subforms. J Hypertens. 1998;16(12 Pt 1):1735-43. [Crossref] [PubMed]
- Owens P, Atkins N, O'Brien E. Diagnosis of white coat hypertension by ambulatory blood pressure monitoring. Hypertension. 1999;34(2):267-72. [Crossref] [PubMed]
- Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhäger WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350(9080):757-64. [Crossref] [PubMed]
- Mulè G, Nardi E, Cottone S, Andronico G, Federico MR, Piazza G, et al. Relationships between ambulatory white coat effect and left ventricular mass in arterial hypertension. Am J Hypertens. 2003;16(6):498-501. [Crossref] [PubMed]
- Alt FB. Multivariate quality control. In: Kotz S, Johnson NL, eds. Encyclopedia of Statistical Science. Vol. 6. New York: John Wiley; 1985. p.110-22.
- Lowry CA, Montgomery DC. A review of multivariate control charts. IIE Transactions. 1995;27(6):800-10. [Crossref]
- Bersimis S, Psarakis S, Panaretos J. Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International. 2007;23(5):517-43. [Crossref]
- Dogu E Monitoring time between medical errors to improve health-care quality. International Journal for Quality Research. 2012;6(2).151-7. [Link]
- Sun R, Tsung F. A kernel-distance-based multivariate control chart using support vector methods. International Journal of Production Research. 2003;41(13):2975-89. [Crossref]
- Deng H, Runger G, Tuv E. System monitoring with real-time contrasts. Journal of Quality Technology. 2012;44(1):9-27. [Crossref]
- Hu J, Runger G, Tuv E. Tuned artificial contrasts to detect signals. International Journal of Production Research. 2007;45(23):5527-34. [Crossref]
- Chongfuangprinya P, Kim SB, Park SK, Sukchotrat T. Integration of support vector machines and control charts for multivariate process monitoring. Journal of Statistical Computation and Simulation. 2011;81(9):1157-73. [Crossref]
- Sukchotrat T, Kim SB, Tsui KL, Chen VC. Integration of classification algorithms and control chart techniques for monitoring multivariate processes. Journal of Statistical Computation and Simulation. 2011;81(12):1897-911. [Crossref]
- Zhang C, Tsung F, Zou C. A general framework for monitoring complex processes with both in-control and out-of-control information. Computers & Industrial Engineering. 2015;85:157-68. [Crossref]
- Hawkins DM, Olwell DH. Cumulative Sum Charts and Charting for Quality Improvement. 1st ed. New York: Springer Science & Business Media; 1998. [Crossref]
- Hawkins DM, Maboudou-Tchao EM. Self-starting multivariate exponentially weighted moving average control charting. Technometrics. 2007;49(2):199-209. [Crossref]
- Jang S, Park SH, Baek JG. Real-time contrasts control chart using random forests with weighted voting. Expert Systems with Applications. 2017;71:358-69. [Crossref]
- Wei Q, Huang W, Jiang W, Zhao W. Real-time process monitoring using kernel distances. International Journal of Production Research. 2016;54(21):6563-78. [Crossref]
.: Process List