Objective: Titanium can alter peri-implant mucosa cytokine response to microbiological and chemical stresses. This work used organotypic titanium-oral mucosa model to evaluate oxidant resistance and cytokine response to Porphyromonas gingivalis lipopolysaccharide (Pg LPS) and nicotine. Material and Methods: Seeding gingival keratinocytes on collagen gels with fibroblasts and adding titanium grade (Ti-Gr) 4, Ti-Gr 5, or hydroxyapatite discs developed an organotypic titanium-oral mucosa model. Pg LPS (1 l/mL), nicotine (1.54 mM), or both were given to the model. The Luminex® xMAPTM technology measured interleukin (IL)-1β, IL-1Ra, IL-8, monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor levels in culture media. Cultured tissues were paraffin-blocked and immunohistochemistry was used to measure nuclear factor erythroid 2 like 2 (NFE2L2/NRF2), 8-hydroxyguanosine (8-OHdG), and Parkinsonism-associated deglycase (PARK7/DJ-1). Statistical analysis included one-way analysis of varianceand Tukey's HSD. Results: Nicotine and Pg LPS+nicotine increased IL-1β and IL-1Ra secretions in Ti-Gr 4, Ti-Gr 5, and hydroxyapatite groups (p<0.01). Pg LPS alone (p<0.01) and in conjunction with nicotine (p=0.021) enhanced MCP-1 production, but nicotine alone lowered it (p=0.024). IL-8 concentrations rose in all test groups (p<0.01). All groups treated with nicotine, LPS, or both showed increased 8-Hydroxydeoxyguanosine and NFE2L2/NRF2 immunostainings (p<0.01), whereas PARK7/DJ-1 expression remained unchanged. When assessed without inducers, Ti-Gr 4, Ti-Gr 5, or hydroxyapatite groups showed no significant variations in cytokine secretion patterns, NFEL2/NRF2, 8-OHdG, or PARK7/DJ-1 immunostainings (p>0.05). Conclusion: Titanium did not affect cytokines or oxidant resistance molecules in our organotypic model without inducers. However, Pg LPS, nicotine, and their mixtures enhance cytokines and oxidative resistance molecules.
Keywords: Cell culture, three dimensional; keratinocyte; fibroblast; porphyromonas gingivalis lipopolysaccharide; nicotine
Amaç: Titanyum, peri-implant mukozanın kimyasal ve mikrobiyal uyanlara karşı olan sitokin yanıtını değiştirebilir. Bu çalışmada, organotipik titanyum-ağız mukozası modeli kullanılarak Porphyromonas gingivalis lipopolisakkaridi (Pg LPS) ve nikotine karşı oksidatif direnç yanıtının incelenmesi amaçlanmıştır. Gereç ve Yöntemler: Organotipik model, fibroblast içeren kolajen jelin üzerine gingival keratinositlerin ekilmesini takiben üzerlerine titanyum grade (Ti-Gr) 4, Ti-Gr 5 ve hidroksiapatit disklerin yerleştirilmesi ile oluşturuldu. Uyaran olarak Pg LPS (1 l/mL), nikotin (1,54 mM) veya bileşimleri (Pg LPS+nicotine) modellere uygulandı. Kültür ortamındaki interlökin (IL)-1, IL-1 reseptör antagonisti (IL-1Ra), IL-8, monosit kemoatraktan protein [Monocyte chemoattractant protein-1 (MCP-1)] ve vasküler endotelyal büyüme faktörünü seviyeleri Luminex® xMAPTM yöntemi ile ölçüldü. Kültüre edilen örnekler parafin bloklara alınarak, nükleer faktör, eritroid 2 benzeri 2 (NFE2L2/NRF2), 8-hidroksiguanozin (8-OHdG) ve Parkinsonizm ile ilişkilendirilen deglikaz [Parkinsonism-associated deglycase (PARK7/DJ-1)] protein ekspresyonları immünohistokimya ile analiz edildi. İstatistiksel analiz için tek yönlü varyans analizi ve Tukey's HSD testi kullanıldı. Bulgular: Ti-Gr 4, Ti-Gr 5 ve hidroksiapatit gruplarında, nikotin ve Pg LPS+nikotin IL-1β ve IL-1Ra ekspresyonunu arttırdığı görüldü (p<0,01). Pg LPS tek başına (p<0,01) ve nikotin ile kombinasyon halinde (p=0,021) uygulandığında MCP-1 seviyesinde artış gözlemlenirken, tek başına nikotin varlığında MCP-1 seviyesinde azalma görüldü (p=0,024). Tüm test gruplarında IL-8 konsantrasyonlarının arttığı tespit edildi (p<0,01). Nikotin, Pg LPS veya bunların kombinasyonun uygulandığı tüm gruplarda 8-OHdG ve NFE2L2/NRF2 ait immün boylamalar daha yoğun iken (p<0,01), PARK7/DJ-1eşit düzeyde gözlemlendi (p>0,05). Her hangi bir uyaran olmadığında Ti-Gr 4, Ti-Gr 5 veya hidroksiapatit grupları arasında sitokin seviyeleri ve NFEL2/NRF2, 8-Hidroksideoksiguanozin veya PARK7/DJ-1 immün boyamalarında herhangi bir fark bulunamadı (p>0,05). Sonuç: Organotipik titanyum-ağız mukozası modelinde titanyumun sitokin yanıtı uyarmadığı ve oksidatif direnç moleküllerinin artışına neden olmadığı, ancak Pg LPS, nikotin ve kombinasyonlarının varlığında sitokin yanıtını uyardığı ve oksidatif direnç moleküllerinin ortaya çıkmasına neden olduğu çalışmamızca gösterilmiştir.
Anahtar Kelimeler: Hücre kültürü, üç boyutlu; keratinosit; fibroblast; porphyromonas gingivalis lipopolisakkaridler; nikotin
- Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84(4):436-43. [Crossref] [PubMed]
- Jepsen S, Berglundh T, Genco R, Aass AM, Demirel K, Derks J, et al.Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol. 2015;42 Suppl 16:S152-7. [Crossref] [PubMed]
- Gölz L, Memmert S, Rath-Deschner B, Jäger A, Appel T, Baumgarten G, et al.Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases. Mediators Inflamm. 2015;2015:438085. [Crossref] [PubMed] [PMC]
- Muniz FW, Nogueira SB, Mendes FL, Rösing CK, Moreira MM, de Andrade GM, et al. The impact of antioxidant agents complimentary to periodontal therapy on oxidative stress and periodontal outcomes: A systematic review. Arch Oral Biol. 2015;60(9):1203-14. [Crossref] [PubMed]
- Kurgan Ş, Önder C, Altıngöz SM, Bağış N, Uyanık M, Serdar MA, et al. High sensitivity detection of salivary 8-hydroxy deoxyguanosine levels in patients with chronic periodontitis. J Periodontal Res. 2015;50(6):766-74. [Crossref] [PubMed]
- Avezov K, Reznick AZ, Aizenbud D. Oxidative damage in keratinocytes exposed to cigarette smoke and aldehydes. Toxicol In Vitro. 2014;28(4):485-91. [Crossref] [PubMed]
- Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000. 2010;53:167-81. [Crossref] [PubMed]
- Basso FG, Soares DG, Pansani TN, Turrioni AP, Scheffel DL, de Souza Costa CA, et al. Effect of LPS treatment on the viability and chemokine synthesis by epithelial cells and gingival fibroblasts. Arch Oral Biol. 2015;60(8):1117-21. [Crossref] [PubMed]
- Fitzsimmons TR, Ge S, Bartold PM. Compromised inflammatory cytokine response to P. gingivalis LPS by fibroblasts from inflamed human gingiva. Clin Oral Investig. 2018;22(2):919-927. [Crossref] [PubMed]
- Schwartz-Filho HO, Morandini AC, Ramos-Junior ES, Jimbo R, Santos CF, Marcantonio E Jr, et al. Titanium surfaces with nanotopography modulate cytokine production in cultured human gingival fibroblasts. J Biomed Mater Res A. 2012;100(10):2629-36. [Crossref] [PubMed]
- Lagneau C, Farges JC, Exbrayat P, Lissac M. Cytokeratin expression in human oral gingival epithelial cells: in vitro regulation by titanium-based implant materials. Biomaterials. 1998;19(11-12):1109-15. [Crossref] [PubMed]
- Chai WL, Moharamzadeh K, Brook IM, Emanuelsson L, Palmquist A, van Noort R. Development of a novel model for the investigation of implant-soft tissue interface. J Periodontol. 2010;81(8):1187-95. [Crossref] [PubMed]
- Gursoy UK, Pöllänen M, Könönen E, Uitto VJ. A novel organotypic dento-epithelial culture model: effect of Fusobacterium nucleatum biofilm on B-defensin-2, -3, and LL-37 expression. J Periodontol. 2012;83(2):242-7. [Crossref] [PubMed]
- Mäkelä M, Larjava H, Pirilä E, Maisi P, Salo T, Sorsa T, et al. Matrix metalloproteinase 2 (gelatinase A) is related to migration of keratinocytes. Exp Cell Res. 1999;251(1):67-78. [Crossref] [PubMed]
- Oksanen J, Hormia M. An organotypic in vitro model that mimics the dento-epithelial junction. J Periodontol. 2002;73(1):86-93. [Crossref] [PubMed]
- Kasnak G, Firatli E, Könönen E, Olgac V, Zeidán-Chuliá F, Gursoy UK. Elevated levels of 8-OHdG and PARK7/DJ-1 in peri-implantitis mucosa. Clin Implant Dent Relat Res. 2018;20(4):574-82. [Crossref] [PubMed]
- Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B. Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res. 1992;3(1):1-8. [Crossref] [PubMed]
- Schupbach P, Glauser R. The defense architecture of the human periimplant mucosa: a histological study. J Prosthet Dent. 2007;97(6 Suppl):S15-25. Erratum in: J Prosthet Dent. 2008;99(3):167. [Crossref] [PubMed]
- Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res. 2001;12(6):559-71. [Crossref] [PubMed]
- Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000. 2015;69(1):46-67. [Crossref] [PubMed]
- Imamura K, Kokubu E, Kita D, Ota K, Ishihara K, Saito A. Cigarette smoke condensate modulates migration of human gingival epithelial cells and their interactions with Porphyromonas gingivalis. J Periodontal Res. 2015;50(3):411-21. [Crossref] [PubMed]
- Chapple IL, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000. 2007;43:160-232. [Crossref] [PubMed]
- Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69(1):7-17. [Crossref] [PubMed]
- Żukowski P, Maciejczyk M, Waszkiel D. Sources of free radicals and oxidative stress in the oral cavity. Arch Oral Biol. 2018;92:8-17. [Crossref] [PubMed]
- Sánchez-Siles M, Lucas-Azorin J, Salazar-Sánchez N, Carbonell-Meseguer L, Camacho-Alonso F. Salivary Concentration of Oxidative Stress Biomarkers in a Group of Patients with Peri-Implantitis: A Transversal Study. Clin Implant Dent Relat Res. 2016;18(5):1015-22. [Crossref] [PubMed]
- Kusumoto Y, Hirano H, Saitoh K, Yamada S, Takedachi M, Nozaki T, et al. Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemoattractant protein-1 after stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol. 2004;75(3):370-9. [Crossref] [PubMed]
- Johnson GK, Guthmiller JM, Joly S, Organ CC, Dawson DV. Interleukin-1 and interleukin-8 in nicotine- and lipopolysaccharide-exposed gingival keratinocyte cultures. J Periodontal Res. 2010;45(4):583-8. [Crossref] [PubMed]
- Nguyen TT, Huynh NN, Seubbuk S, Nilmoje T, Wanasuntronwong A, Surarit R. Oxidative stress induced by Porphyromonas gingivalis lysate and nicotine in human periodontal ligament fibroblasts. Odontology. 2019;107(2):133-41. [Crossref] [PubMed]
- Dionigi C, Larsson L, Carcuac O, Berglundh T. Cellular expression of DNA damage/repair and reactive oxygen/nitrogen species in human periodontitis and peri-implantitis lesions. J Clin Periodontol. 2020;47(12):1466-75. [Crossref] [PubMed] [PMC]
- Cao H, Wang L, Chen B, Zheng P, He Y, Ding Y, et al. DNA demethylation upregulated Nrf2 expression in alzheimer's disease cellular model. Front Aging Neurosci. 2016;7:244. [Crossref] [PubMed] [PMC]
- Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350. [Crossref] [PubMed] [PMC]
- Guo T, Gulati K, Arora H, Han P, Fournier B, Ivanovski S. Orchestrating soft tissue integration at the transmucosal region of titanium implants. Acta Biomater. 2021;124:33-49. [Crossref] [PubMed]
- Östberg AK, Dahlgren U, Sul YT, Johansson CB. Inflammatory cytokine release is affected by surface morphology and chemistry of titanium implants. J Mater Sci Mater Med. 2015;26(4):155. [Crossref] [PubMed]
- Bruni S, Martinesi M, Stio M, Treves C, Bacci T, Borgioli F. Effects of surface treatment of Ti-6Al-4V titanium alloy on biocompatibility in cultured human umbilical vein endothelial cells. Acta Biomater. 2005;1(2):223-34. [Crossref] [PubMed]
- Andrukhov O, Behm C, Blufstein A, Wehner C, Gahn J, Pippenger B, et al. Effect of implant surface material and roughness to the susceptibility of primary gingival fibroblasts to inflammatory stimuli. Dent Mater. 2020;36(6):e194-e205. [Crossref] [PubMed]
.: Process List