Amaç: Primer silier diskinezi (PSD) hastalarında balgam kültürü, basit ve noninvaziv olması nedeniyle en sık tercih edilen havayolu mikrobiyolojisi örneklemesidir. Bronkoalveoler lavaj (BAL) kültürü, alt solunum yolu mikrobiyolojisinin gösterilmesinde en güvenilir yöntem olmasına rağmen genel anestezi gerektirmesi ve invaziv olması nedeniyle rutinde tercih edilmemektedir. Bu çalışmanın amacı, PSD hastalarının klinik, radyolojik ve bronkoskopik verilerinin incelenmesi; bu hastalarda alt solunum yolu mikrobiyolojisinin balgam ve BAL örneklerinde korelasyonunun araştırılmasıdır. Gereç ve Yöntemler: Araştırma, retrospektif tanımlayıcı çalışma olarak planlanmıştır. Ocak 2013 ile Aralık 2020 tarihleri arasında PSD tanısı alan; 0-18 yaş arası hastaların demografik, klinik ve radyolojik verileri incelenmiştir. PSD nedeniyle izlemde iken tanısal fleksibl bronkoskopi (FB) yapılıp, BAL ve FB tarihi ile en fazla 3 ay arasında alınmış ise balgam kültürü örnekleri karşılaştırılmıştır. Bulgular: Otuz üç hastanın yaş ortancası 7,64 (minimum 3,5-maksimum 16 yaş) idi. On dört (%42,4) hasta erkek, 19 (%57,6) hasta ise kız idi. İki (%6,06) hastanın balgam kültüründe Streptococcus pneumoniae üremesi raporlandı, diğer hastaların balgam kültüründe üreme olmadı. BAL mikrobiyolojisinde 18 (%54,55) örnekte üreme görüldü. Balgam ve BAL örneklerinin mikrobiyolojik sonuçları karşılaştırıldığında, BAL örneklerinde bakteri üremesinin istatistiksel olarak çok daha yüksek olduğu görüldü (p<0,001). Hastaların yaşları ile solunum yolu mikrobiyolojisi (balgam ya da BAL) arasında; spirometri verileri (birinci saniyedeki zorlu ekspiratuar volüm ve zorlu vital kapasite yüzdeleri) ile solunum yolu mikrobiyolojisi (balgam ya da BAL) arasında korelasyon görülmedi. Sonuç: Balgam kültürü örneklerinin alt solunum yolu mikrobiyolojisini yansıtma oranı, BAL örneklerine göre belirgin düşüktür. Bu nedenle tedavi yanıtsızlığı hâlinde BAL örneğinin muhtemel patojeni saptayarak tedaviye yön verebileceği bilinmelidir.
Anahtar Kelimeler: Primer silier diskinezi; balgam; bronkoalveoler lavaj; fleksibl bronkoskopi
Objective: Sputum culture is the most preferred sampling of airway microbiology in patients with primary ciliary dyskinesia (PCD) due to its simple and noninvasive nature. Although bronchoalveolar lavage (BAL) culture is the most reliable method for demonstrating lower respiratory tract microbiology; it is not routinely preferred by virtue of flexible bronchoscopy with general anesthesia recruitment. The aim of this study is to investigate clinical, radiological and bronchoscopic data of PCD patients and to explore the correlation of lower respiratory tract microbiology in sputum and BAL samples. Material and Methods: This study is made to be a retrospective and descriptive one. Demographic, clinical and radiological data of patients diagnosed with PCD aged 0-18 years between January 2013-December 2020 were analyzed. If diagnostic flexible bronchoscopy (FB) was performed during follow-up due to PSD, and if a sputum culture was taken from a maximum of 3 months with the date of BAL, results were studied. Results: The median age of 33 patients was 7.64 (minimum 3.5-maximum 16 years). Fourteen (42.4%) patients were male, 19 (57.6%) patients were female. Streptococcus pneumoniae growth was reported in the sputum cultures of 2 (6.06%) patients, and there was no growth in the sputum cultures of the other patients. BAL microbiology showed growth in 18 (54.55%) samples. Bacterial overgrowth in BAL samples was found to be statistically significantly higher than sputum samples (p<0.001). There was no correlation between spirometry data (forced expiratory volume in 1 second and forced vital capacity percentages) and respiratory tract microbiology (sputum or BAL); and no correlation between age and respiratory tract microbiology (sputum or BAL). Conclusion: Sputum culture samples reflect lower respiratory tract microbiology significantly lower than BAL samples. For this reason, it should be known that in case of treatment failure, the BAL sample can determine the possible pathogen and guide the treatment.
Keywords: Primary ciliary dyskinesia; sputum; bronchoalveolar lavage; flexible bronchoscopy
- Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW. Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med. 2013;188(8):913-22. [Crossref] [PubMed] [PMC]
- Sagel SD, Davis SD, Campisi P, Dell SD. Update of respiratory tract disease in children with primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8(5):438-43. [PubMed]
- Fauroux B, Tamalet A, Clément A. Management of primary ciliary dyskinesia: the lower airways. Paediatr Respir Rev. 2009;10(2):55-7. [Crossref]
- Lucas JS, Burgess A, Mitchison HM, Moya E, Williamson M, Hogg C; National PCD Service, UK. Diagnosis and management of primary ciliary dyskinesia. Arch Dis Child. 2014;99(9):850-6. [Crossref] [PubMed] [PMC]
- Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia. 2015;4(1):2. [Crossref] [PubMed] [PMC]
- Shapiro AJ, Davis SD, Polineni D, Manion M, Rosenfeld M, Dell SD, et al; American Thoracic Society Assembly on Pediatrics. Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;197(12):e24-39. [Crossref] [PubMed] [PMC]
- Kuehni CE, Lucas JS. Diagnosis of primary ciliary dyskinesia: summary of the ERS Task Force report. Breathe (Sheff). 2017;13(3):166-78. [Crossref] [PubMed] [PMC]
- Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, et al; Genetic Disorders of Mucociliary Clearance Consortium. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 2016;51(2):115-32. [Crossref] [PubMed] [PMC]
- Davis SD, Ferkol TW, Rosenfeld M, Lee HS, Dell SD, Sagel SD, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191(3):316-24. [Crossref] [PubMed] [PMC]
- Miao XY, Ji XB, Lu HW, Yang JW, Xu JF. Distribution of major pathogens from sputum and bronchoalveolar lavage fluid in patients with noncystic fibrosis bronchiectasis: a systematic review. Chin Med J (Engl). 2015;128(20):2792-7. [Crossref] [PubMed] [PMC]
- Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med. 2004;169(4):459-67. [Crossref] [PubMed]
- Nicolai T. The role of rigid and flexible bronchoscopy in children. Paediatr Respir Rev. 2011;12(3):190-5. [Crossref] [PubMed]
- Pasteur MC, Bilton D, Hill AT; British Thoracic Society Bronchiectasis non-CF Guideline Group. British Thoracic Society guideline for non-CF bronchiectasis. Thorax. 2010;65 Suppl 1:i1-58. [Crossref] [PubMed]
- Maglione M, Bush A, Nielsen KG, Hogg C, Montella S, Marthin JK, et al. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr Pulmonol. 2014;49(12):1243-50. [Crossref] [PubMed]
- Barbato A, Frischer T, Kuehni CE, Snijders D, Azevedo I, Baktai G, et al. Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J. 2009;34(6):1264-76. [Crossref] [PubMed]
- Behan L, Dimitrov BD, Kuehni CE, Hogg C, Carroll M, Evans HJ, et al. PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J. 2016;47(4):1103-12. [Crossref] [PubMed] [PMC]
- Emiralioglu N, Sancak B, Tuğcu GD, Sener B, Yalcın E, Dogru D et al. Comparison of bronchoalveolar lavage and sputum microbiology in patients with primary ciliary dyskinesia. Pediatric Allergy, Immunology, and Pulmonology. 2017;30(1):14-7. [Crossref]
- An SQ, Warris A, Turner S. Microbiome characteristics of induced sputum compared to bronchial fluid and upper airway samples. Pediatr Pulmonol. 2018;53(7):921-8. [Crossref] [PubMed]
- Zampoli M, Pillay K, Carrara H, Zar HJ, Morrow B. Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis. J Cyst Fibros. 2016;15(5):605-10. [Crossref] [PubMed]
- Mussaffi H, Fireman EM, Mei-Zahav M, Prais D, Blau H. Induced sputum in the very young: a new key to infection and inflammation. Chest. 2008;133(1):176-82. [Crossref] [PubMed]
- Li AM, Sonnappa S, Lex C, Wong E, Zacharasiewicz A, Bush A, et al. Non-CF bronchiectasis: does knowing the aetiology lead to changes in management? Eur Respir J. 2005;26(1):8-14. [Crossref] [PubMed]
- Pizzutto SJ, Grimwood K, Bauert P, Schutz KL, Yerkovich ST, Upham JW, et al. Bronchoscopy contributes to the clinical management of indigenous children newly diagnosed with bronchiectasis. Pediatr Pulmonol. 2013;48(1):67-73. [Crossref] [PubMed]
- Chang AB, Boyce NC, Masters IB, Torzillo PJ, Masel JP. Bronchoscopic findings in children with non-cystic fibrosis chronic suppurative lung disease. Thorax. 2002;57(11):935-8. [Crossref] [PubMed] [PMC]
- Edwards EA, Asher MI, Byrnes CA. Paediatric bronchiectasis in the twenty-first century: experience of a tertiary children's hospital in New Zealand. J Paediatr Child Health. 2003;39(2):111-7. [Crossref] [PubMed]
- Piatti G, De Santi MM, Farolfi A, Zuccotti GV, D'Auria E, Patria MF, et al. Exacerbations and Pseudomonas aeruginosa colonization are associated with altered lung structure and function in primary ciliary dyskinesia. BMC Pediatr. 2020;20(1):158. [Crossref] [PubMed] [PMC]
- Alanin MC, Nielsen KG, von Buchwald C, Skov M, Aanaes K, Høiby N, et al. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin Microbiol Infect. 2015;21(12):1093.e1-7. [Crossref] [PubMed]
- Cohen-Cymberknoh M, Weigert N, Gileles-Hillel A, Breuer O, Simanovsky N, Boon M, et al. Clinical impact of Pseudomonas aeruginosa colonization in patients with Primary Ciliary Dyskinesia. Respir Med. 2017;131:241-6. [Crossref] [PubMed]
- Santamaria F, Montella S, Camera L, Palumbo C, Greco L, Boner AL. Lung structure abnormalities, but normal lung function in pediatric bronchiectasis. Chest. 2006;130(2):480-6. [Crossref] [PubMed]
- Marthin JK, Petersen N, Skovgaard LT, Nielsen KG. Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med. 2010;181(11):1262-8. [Crossref] [PubMed]
- Fuchs SI, Eder J, Ellemunter H, Gappa M. Lung clearance index: normal values, repeatability, and reproducibility in healthy children and adolescents. Pediatr Pulmonol. 2009;44(12):1180-5. [Crossref] [PubMed]
- Boon M, Vermeulen FL, Gysemans W, Proesmans M, Jorissen M, De Boeck K. Lung structure-function correlation in patients with primary ciliary dyskinesia. Thorax. 2015;70(4):339-45. [Crossref] [PubMed]
- Nyilas S, Bauman G, Pusterla O, Sommer G, Singer F, Stranzinger E, et al. Structural and Functional Lung Impairment in Primary Ciliary Dyskinesia. Assessment with magnetic resonance imaging and multiple breath washout in comparison to spirometry. Ann Am Thorac Soc. 2018;15(12):1434-42. [Crossref] [PubMed]
- Rogers GB, Zain NM, Bruce KD, Burr LD, Chen AC, Rivett DW, et al. A novel microbiota stratification system predicts future exacerbations in bronchiectasis. Ann Am Thorac Soc. 2014;11(4):496-503. [Crossref] [PubMed]
- Ahmed B, Cox MJ, Cuthbertson L, James PL, Cookson WOC, Davies JC, et al. Comparison of the upper and lower airway microbiota in children with chronic lung diseases. PLoS One. 2018;13(8):e0201156. [Crossref] [PubMed] [PMC]
- Kapur N, Grimwood K, Masters IB, Morris PS, Chang AB. Lower airway microbiology and cellularity in children with newly diagnosed non-CF bronchiectasis. Pediatr Pulmonol. 2012;47(3):300-7. [Crossref] [PubMed]
.: Process List