Amaç: Primer açık açılı glokom (PAAG) hastalarında statik ve dinamik pupilla fonksiyonlarını tespit etmek ve glokom evresi ile ilişkisini değerlendirmek. Gereç ve Yöntemler: Bu kesitsel-karşılaştırmalı çalışmaya, glokom birimimize başvuran yeni tanı PAAG olguları ve herhangi bir oküler/orbital hastalığı olmayan sağlıklı katılımcılar dâhil edildi. PAAG'li katılımcılar glokomatöz hasar evresine göre erken evre (Grup 1; n=32), orta evre (Grup 2; n=35) ve ileri evre (Grup 3; n=30) olarak sınıflandırıldı. Kontrol grubu sağlıklı 30 katılımcıdan oluşturuldu (Grup 4). Bir otomatik pupillometri sistemi ile hastaların pupilla fonksiyonları değerlendirildi. Statik karakteristikler skotopik, mezopik, düşük fotopik ve yüksek fotopik pupilla çapı (PÇ, mm); dinamik karakteristikler ise dinlenim çapı (DÇ, mm), pupilla kontraksiyon genliği (PKGen, mm), pupilla kontraksiyon gecikmesi (PKG, ms), pupilla kontraksiyon süresi (PKS, ms), pupilla kontraksiyon hızı (PKH, mm/s), pupilla dilatasyon gecikmesi (PDG, ms), pupilla dilatasyon süresi (PDS, ms) ve pupilla dilatasyon hızı (PDH, mm/s) idi. Elde edilen veriler gruplar arasında varyans analizi ile değerlendirildi. Bulgular: Kontrollerle karşılaştırıldığı zaman yüksek fotopik PÇ değeri orta ve ileri evre glokom grubunda anlamlı yüksek saptandı (sırasıyla p=0,003 ve p=0,001). DÇ, PKS, PDG ve PDH açısından gruplar arasında anlamlı fark yoktu (tüm değerler için p>0,05). PKGen, PKG ve PKH parametreleri açısından orta ve ileri evre glokom olgularında kontrol grubu ile karşılaştırıldığında anlamlı fark tespit edilirken (tüm değerler için p<0,05); PDS ölçümü sadece ileri evre glokom grubu ile kontrol olguları arasında anlamlı idi (p=0,004). Sonuç: Glokom evresinde ilerleme ile birlikte pupilla fonksiyonlarında kantitatif değişimler gözlemlendi. Bu sonuçlar, glokomun otonom sinir disfonksiyonu ile ilişkili olabileceğini göstermiştir.
Anahtar Kelimeler: Otonom sinir sistemi; primer açık açılı glokom; pupillometri
Objective: To determine static and dynamic pupillary functions in patients with primary open-angle glaucoma (POAG) and evaluate their association with glaucoma stage. Materials and Methods: In this cross-sectional comparative study, newly diagnosed POAG patients and healthy control participants were included. POAG participants were classified as early stage (Group 1; n=32), moderate stage (Group 2; n=35) and advanced stage (Group 3; n=30) according to the stage of glaucomatous damage. The control group consisted of 30 healthy participants (Group 4). Pupillary functions of the patients were evaluated with an automatic pupillometry system. Static characteristics were scotopic, mesopic, low photopic, and high photopic pupil diameter (PD, mm); dynamic characteristics were resting diameter (RD, mm), amplitude of pupil contraction (APC, mm), latency of pupil contraction (LPC, ms), duration of pupil contraction (DPC, ms), velocity of pupil contraction (VPC, mm/s), latency of pupil dilation (LPD, ms), duration of pupil dilation (DPD, ms), and velocity of pupil dilation (VPD, mm/s). The data obtained were evaluated by analysis of variance between groups. Results: The high photopic PD value was found to be significantly higher in the moderate and advanced stage glaucoma group compared with the controls (p=0.003 and p=0.001, respectively). There was no significant difference between the groups in terms of RD, DPC, LPD, and VPD (p>0.05 for all). While a significant difference was detected in moderate and advanced stage glaucoma patients in terms of APC, LPC, and VPC parameters compared to the control group (p<0.05 for all), DPD measurement was significant only between the advanced glaucoma group and control subjects (p=0.004). Conc lusion: Quantitative changes in pupillary functions were observed with the progression of the glaucoma stage. These results showed that glaucoma may be associated with autonomic nervous dysfunction.
Keywords: Autonomic nervous system; primary open angle glaucoma; pupillometry
- Stamper RL, Lieberman MF, Drake MV. Primary open angle glaucoma. In: Stamper RL, Lieberman MF, Drake MV, eds. Becker-Shaffer's Diagnosis and Therapy of the Glaucomas. 8th ed. Missouri: Mosby; 2009. p.239-65. [Crossref]
- Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;2015(11):CD008803. [PubMed] [PMC]
- Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020;117(13): 225-34. [PubMed] [PMC]
- Kastner A, King AJ. Advanced glaucoma at diagnosis: current perspectives. Eye (Lond). 2020;34(1):116-28. [Crossref] [PubMed] [PMC]
- Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: A review. JAMA. 2021;325(2):164-74. [Crossref] [PubMed]
- Park HY, Park SH, Park CK. Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction. Invest Ophthalmol Vis Sci. 2014;55(4):2557-63. [Crossref] [PubMed]
- Lindemann F, Kuerten D, Koch E, Fuest M, Fischer C, Voss A, et al. Blood pressure and heart rate variability in primary open-angle glaucoma and normal tension glaucoma. Curr Eye Res. 2018;43(12):1507-13. [Crossref] [PubMed]
- Gherghel D, Hosking SL, Orgül S. Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol. 2004;49(5):491-508. [Crossref] [PubMed]
- Tekin K, Kiziltoprak H, Sekeroglu MA, Yetkin E, Bayraktar S, Yilmazbas P. Static and dynamic pupil characteristics in pseudoexfoliation syndrome and glaucoma. Clin Exp Optom. 2020;103(3):332-8. [Crossref] [PubMed]
- Sarezky D, Volpe NJ, Park MS, Tanna AP. Correlation between inter-eye difference in average retinal nerve fiber layer thickness and afferent pupillary response as measured by an automated pupillometer in glaucoma. J Glaucoma. 2016;25(3):312-6. [Crossref] [PubMed]
- Rukmini AV, Milea D, Baskaran M, How AC, Perera SA, Aung T, et al. Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology. 2015; 122(9):1777-85. [Crossref] [PubMed]
- Martucci A, Cesareo M, Napoli D, Sorge RP, Ricci F, Mancino R, et al. Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillo metry. Int Ophthalmol. 2014;34(6): 1241-7. [Crossref] [PubMed]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Chapter 2: Classification and terminologySupported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 2 Classification and Terminology. Br J Ophthalmol. 2017; 101(5):73-127. [Crossref] [PubMed] [PMC]
- Hodapp E, Parrish R, Anderson DR. Clinical Decisions in Glaucoma. St. Louis, MO, USA: Mosby Incorporated.; 1993. [Link]
- Asefa NG, Neustaeter A, Jansonius NM, Snieder H. Autonomic dysfunction and blood pressure in glaucoma patients: The lifelines cohort study. Invest Ophthalmol Vis Sci. 2020;61(11):25. [Crossref] [PubMed] [PMC]
- Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R; Los Angeles Latino Eye Study Group. Blood pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino Eye Study. Invest Ophthalmol Vis Sci. 2010;51(6):2872-7. [Crossref] [PubMed] [PMC]
- Kim H, Choi B. Nonlinear Relationship Between Blood Pressure and Glaucoma in US Adults. Am J Hypertens. 2019;32(3):308-16. [Crossref] [PubMed]
- Pasquale LR. Vascular and autonomic dysregulation in primary open-angle glaucoma. Curr Opin Ophthalmol. 2016;27(2):94-101. [Crossref] [PubMed] [PMC]
- Reiner A, Fitzgerald MEC, Del Mar N, Li C. Neural control of choroidal blood flow. Prog Retin Eye Res. 2018;64:96-130. [Crossref] [PubMed] [PMC]
- Kurysheva NI, Ryabova TY, Shlapak VN. Heart rate variability: the comparison between high tension and normal tension glaucoma. EPMA J. 2018;9(1):35-45. [Crossref] [PubMed] [PMC]
- Gherghel D, Hosking SL, Armstrong R, Cunliffe IA. Autonomic dysfunction in unselected and untreated primary open angle glaucoma patients: a pilot study. Ophthalmic Physiol Opt. 2007;27(4):336-41. [Crossref] [PubMed]
- Mathôt S. Pupillometry: Psychology, Physiology, and Function. J Cogn. 2018;1(1):16. [Crossref] [PubMed] [PMC]
- Park HL, Jung SH, Park SH, Park CK. Detecting autonomic dysfunction in patients with glaucoma using dynamic pupillometry. Medicine (Baltimore). 2019;98(11):e14658. [Crossref] [PubMed] [PMC]
- Chang DS, Arora K, Boland MV, Friedman DS. The relationship between quantitative pupillometry and estimated ganglion cell counts in patients with glaucoma. J Glaucoma. 2019; 28(3):238-42. [Crossref] [PubMed]
- Samuels BC, Hammes NM, Johnson PL, Shekhar A, McKinnon SJ, Allingham RR. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci. 2012;53(11): 7328-35. [Crossref] [PubMed] [PMC]
- Agnifili L, Mastropasqua R, Frezzotti P, Fasanella V, Motolese I, Pedrotti E, et al. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmol. 2015;93(1):e14-21. [Crossref] [PubMed]
.: Process List