Objective: This article reports a preliminary study undertaken to investigate the biomechanics of unilateral chewing due to lateral segmental defects extending to angulus, introducing modified designs of 3-point and 2 point testing models. Data concerning test setups used in biomechanic studies of mandible in the literature have been analysed. Material and Methods: Load/displacement data were gathered for the mandibles with the same defect and reconstructed with reconstruction plate in a standart way. Standard models underwent unilateral loading with two different test set-up. The first set-up was consistent with 3 point testing model (Group I) while the second set-up was simulating 2 point testing model (Group II). Furthermore, literature related with in vitro studies of mandible were searched and testing setups used in these studies were evaluated. Results: The mean displacement for Group I was 12.11 mm (±3.36), Group II was 19.56 (±0.92) mm. Group II had significantly greater (p=0.000) displacement when compared with Group I. The mean force before failure for Group I was 850.3 N (±136.1 N), Group II was 1117.83 N (±107.3 N). Models tested with two point system failed at significantly greater force (p=0.000), Conclusion: Three point testing model was more efficient and reflecting the chewing forces better under unilateral loading. Many biomechanic studies in the literature adopted three point system for their studies.
Keywords: Mandible reconstruction; jaw neoplasms; mouth neoplasms
Amaç: Bu makale, angulusa uzanan lateral segmental defekt sebebiyle meydana gelen tek taraflı çiğnemenin biyomekaniğini araştırarak, 2 nokta ve 3 nokta test modellerinin modifiye dizaynlarının denendiği öncü çalışmayı rapor etmektedir. Mandibulanın biyomekanik çalışmalarında kullanılan deney düzeneği bilgileri de analiz edilmiştir. Gereç ve Yöntemler: Aynı standart defekt oluşturulmuş ve rekonstrüksiyon plağı ile aynı standart yöntem ile rekonstrükte edilmiş mandibulalarda yük/displasman verileri elde edilmiştir. Standart modeller 2 farklı deney düzeneğinde sabitlenerek tek taraflı yüklemeye maruz bırakılmıştır. Birinci deney düzeneği (Grup I) 3 nokta test modeli ile uyumlu iken 2. deney düzeneği (Grup II) 2 nokta test modelini simüle etmektedir. Ayrıca mandibulanın in vitro çalışmaları ile ilgili literatür taranarak, bu çalışmalarda kullanılan deney düzenekleri değerlendirilmiştir. Bulgular: Ortalama yer değişikliği Grup I'de 12,11 mm (±3,36), Grup II'de 19,56 (±0,92) mm olarak bulunmuştur. Grup II Grup I ile karşılaştırıldığında istatistiksel olarak anlamlı oranda daha fazla displasman göstermiştir (p=0,000). Başarısızlığa neden olan ortalama maksimum kuvvet Grup I'de 850,3 N (±136,1 N), Grup II'de 1117,83 N (±107,3 N) olarak bulunmuştur. İki nokta sisteminde teste tabi tutulan modeller anlamlı olarak daha fazla kuvvet dayanımı göstermiştir (p=0,000). Sonuç: Üç nokta test modeli daha etkindir ve tek taraflı yüklemede çiğneme kuvvetlerini daha iyi taklit edebilmektedir. Birçok biyomekanik çalışmada, deneylerinde 3 nokta test modelini benimsemişlerdir.
Anahtar Kelimeler: Mandibula rekonstrüksiyonu; çene neoplazmları; ağız neoplazmları
- Schupp W, Arzdorf M, Linke B, Gutwald R. Biomechanical testing of different osteosynthesis systems for segmental resection of the mandible. J Oral Maxillofac Surg. 2007;65(5):924-30. [Crossref] [PubMed]
- Gutwald R, Jaeger R, Lambers FM. Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Comput Methods Biomech Biomed Engin. 2017;20(4):426-35. [Crossref] [PubMed] [PMC]
- Rendenbach C, Sellenschloh K, Gerbig L, Morlock MM, Beck-Broichsitter B, Smeets R, et al. CAD-CAM plates versus conventional fixation plates for primary mandibular reconstruction: A biomechanical in vitro analysis. J Craniomaxillofac Surg. 2017;45(11):1878-83. [Crossref] [PubMed]
- Bredbenner TL, Haug RH. Substitutes for human cadaveric bone in maxillofacial rigid fixation research. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(5):574-80. [Crossref] [PubMed]
- Ribeiro-Junior PD, Magro-Filho O, Shastri KA, Papageorge MB. In vitro biomechanical evaluation of the use of conventional and locking miniplate/screw systems for sagittal split ramus osteotomy. J Oral Maxillofac Surg. 2010;68(4):724-30. [Crossref] [PubMed]
- Ribeiro-Junior PD, Magro-Filho O, Shastri KA, Papageorge MB. Which kind of miniplate to use in mandibular sagittal split osteotomy? An in vitro study. Int J Oral Maxillofac Surg. 2012;41(11):1369-73. [Crossref] [PubMed]
- Cural Ü, Atalay B, Yildirim MS. Comparison of Mechanical Stabilization of the Mandibular Angulus Fracture Fixation, With Titanium Plates and Screws, Resorbable Plates and Screws, and Bone Adhesives. J Craniofac Surg. 2018;29(7):1780-7. [Crossref] [PubMed]
- Van Sickels JE, Peterson GP, Holms S, Haug RH. An in vitro comparison of an adjustable bone fixation system. J Oral Maxillofac Surg. 2005;63(11):1620-5. [Crossref] [PubMed]
- Brasileiro BF, Grempel RG, Ambrosano GM, Passeri LA. An in vitro evaluation of rigid internal fixation techniques for sagittal split ramus osteotomies: advancement surgery. J Oral Maxillofac Surg. 2009;67(4):809-17. [Crossref] [PubMed]
- Hwang JM, Baek SH, Choi JY. Effect of number and geometry of resorbable screws on biomechanical stability of in vitro model with sagittal split ramus osteotomy. J Craniofac Surg. 2012;23(2):363-6. [Crossref] [PubMed]
- Zizelmann C, Hammer B, Gellrich NC, Kokemüller H, Bormann KH, Rohner D. In vitro biomechanical comparison of the effect of pattern, inclination, and size of positional screws on load resistance for bilateral sagittal split osteotomy. J Oral Maxillofac Surg. 2011;69(5):1458-63. [Crossref] [PubMed]
- Armstrong JE, Lapointe HJ, Hogg NJ, Kwok AD. Preliminary investigation of the biomechanics of internal fixation of sagittal split osteotomies with miniplates using a newly designed in vitro testing model. J Oral Maxillofac Surg. 2001;59(2):191-5. [Crossref] [PubMed]
- Lieger O, Schaller B, Bürki A, Büchler P. Biomechanical evaluation of different angle-stable locking plate systems for mandibular surgery. J Craniomaxillofac Surg. 2015;43(8):1589-94. [Crossref] [PubMed]
- Fontana SC, Smith RB, Nazir N, Andrews BT. Biomechanical assessment of fixation methods for segmental mandible reconstruction with fibula in the polyurethane model. Microsurgery. 2016;36(4):330-3. [Crossref] [PubMed]
- Doty JM, Pienkowski D, Goltz M, Haug RH, Valentino J, Arosarena OA. Biomechanical evaluation of fixation techniques for bridging segmental mandibular defects. Arch Otolaryngol Head Neck Surg. 2004;130(12):1388-92. [Crossref] [PubMed]
- Dichard A, Klotch DW. Testing biomechanical strength of repairs for the mandibular angle fracture. Laryngoscope. 1994;104(2):201-8. [Crossref] [PubMed]
- Oguz Y, Watanabe ER, Reis JM, Spin-Neto R, Gabrielli MA, Pereira-Filho VA. In vitro biomechanical comparison of six different fixation methods following 5-mm sagittal split advancement osteotomies. Int J Oral Maxillofac Surg. 2015;44(8):984-8. [Crossref] [PubMed]
- Bayram B, Araz K, Uckan S, Balcik C. Comparison of fixation stability of resorbable versus titanium plate and screws in mandibular angle fractures. J Oral Maxillofac Surg. 2009;67(8):1644-8. [Crossref] [PubMed]
- Esen A, Dolanmaz D, Tüz HH. Biomechanical evaluation of malleable noncompression miniplates in mandibular angle fractures: an experimental study. Br J Oral Maxillofac Surg. 2012;50(5):e65-8. [Crossref] [PubMed]
- Pereira Filho VA, Iamashita HY, Monnazzi MS, Gabrielli MF, Vaz LG, Passeri LA. In vitro biomechanical evaluation of sagittal split osteotomy fixation with a specifically designed miniplate. Int J Oral Maxillofac Surg. 2013;42(3):316-20. [Crossref] [PubMed]
- Klein GBG, Mendes GCB, Ribeiro Junior PD, Viswanath A, Papageorge M. Biomechanical evaluation of different osteosynthesis methods after mandibular sagittal split osteotomy in major advancements. Int J Oral Maxillofac Surg. 2017;46(11):1387-93. [Crossref] [PubMed]
- Vieira Santos ZTB, Goulart DR, Sigua-Rodriguez EA, Pozzer L, Olate S, Albergaria-Barbosa JR. Mechanical evaluation of the use of conventional and locking miniplate/screw systems used in sagittal split ramus osteotomy. J Korean Assoc Oral Maxillofac Surg. 2017;43(2):77-82. [Crossref] [PubMed] [PMC]
- Ulu M, Soylu E, Kelebek S, Dikici S, Oflaz H. Comparative study of biomechanical stability of resorbable and titanium fixation systems after sagittal split ramus osteotomy with a novel designed in-vitro testing unit. J Craniomaxillofac Surg. 2018;46(2):299-304. [Crossref] [PubMed]
- Cilasun U, Uckan S, Dolanmaz D, Saglam H. Immediate mechanical stability of sagittal split ramus osteotomy fixed with resorbable compared with titanium bicortical screws in mandibles of sheep. Br J Oral Maxillofac Surg. 2006;44(6):534-7. [Crossref] [PubMed]
- Sato FR, Asprino L, Consani S, de Moraes M. Comparative biomechanical and photoelastic evaluation of different fixation techniques of sagittal split ramus osteotomy in mandibular advancement. J Oral Maxillofac Surg. 2010;68(1):160-6. [Crossref] [PubMed]
- Gursoytrak B, Unsal N, Demetoglu U, Simsek HO, Saglam H, Dolanmaz D. Biomechanical evaluation of hybrid fixation method of sagittal split ramus osteotomy in mandibular advancement. J Craniomaxillofac Surg. 2018;46(12):2063-8. [Crossref] [PubMed]
- Yi Z, Jian-Guo Z, Guang-Yan Y, Ling L, Fu-Yun Z, Guo-Cheng Z. Reconstruction plates to bridge mandibular defects: a clinical and experimental investigation in biomechanical aspects. Int J Oral Maxillofac Surg. 1999;28(6):445-50. [Crossref] [PubMed]
.: Process List