Severe acute respiratory syndrome-coronavirus-2 (SARS-COV-2), a new type of beta coronavirus that emerged in Wuhan, China, and caused a pandemic, was declared coronavirus disease-2019 (COVID-19) by the World Health Organization on February 12, 2020. Natural remedies from plants have been used traditionally for thousands of years. The global interest in drug development from natural products has grown tremendously. The interest in essential oils, which attract attention with their rich and original content, is increasing in this direction. It is thought that essential oils, which are effective against various microorganisms, may help treat COVID-19 due to their anti-inflammatory, immunomodulatory, bronchodilator, antibacterial, and antiviral properties. This review briefly describes the current biology, epidemiology, and clinical aspects of COVID-19 and essential oil's activity on SARS-COV-2 by considering its effectiveness in this field. It has been observed that most of the studies on this subject consist of in silico and in vitro studies. In this context, molecular docking studies have come into prominence. However, in vivo and clinical studies of essential oils with notable antiviral-antibacterial effects must be increased. Therefore, essential oils and their active components will be promising potential drug candidates against COVID-19, and their numbers will potentially grow. In conclusion, the present review is focused on the most common and well-known essential oils available on the pharmaceutical markets, which show visible activities, especially against enveloped viruses, including COVID-19.
Keywords: Antiviral agents; COVID-19; essential oils; eucalyptol
Çin'in Wuhan eyaletinde ortaya çıkarak pandemiye sebep olan yeni bir beta-koronavirüs türü olan şiddetli akut solunum sendromukoronavirüs-2 [severe acute respiratory syndrome-coronavirus-2 (SARS-COV-2)], Dünya Sağlık Örgütü tarafından, 12 Şubat 2020 tarihinde koronavirüs hastalığı-2019 [coronavirus disease-2019 (COVID19)] olarak ilan edildi. Bitkilerden elde edilen doğal ilaçlar, geleneksel olarak yıllardır kullanılmaktadır. Doğal ürünlerden ilaç geliştirmeye yönelik küresel ilgi, son yıllarda büyük oranda artış göstermektedir. Zengin ve özgün içerikleri ile dikkat çeken uçucu yağlara olan ilgi de bu doğrultuda giderek artmaktadır. Çeşitli mikroorganizmalara karşı etkili olan uçucu yağların antiinflamatuar, immünomodülatör, bronkodilatör, antibakteriyel ve antiviral özellikleri nedeniyle COVID-19 tedavisinde faydalı olabilecekleri düşünülmektedir. Bu derlemede, COVID-19'un mevcut biyolojisi, epidemiyolojisi ile çeşitli klinik yönleri kısaca anlatılmış ve bu alan etkili görülerek ön plana çıkmış uçucu yağlardan bahsedilmiştir. Bu konudaki çalışmaların büyük kısmının in silico ve in vitro çalışmalarından oluştuğu görülmüştür. Bu bağlamda moleküler docking çalışmaları ön plana çıkmaktadır. Ancak güçlü antiviral-antibakteriyel etkili uçucu yağlar başta gelmek üzere, in vivo ve klinik çalışmaların da artırılması gerektiği düşünülmektedir. Bu sayede uçucu yağlar ve etkili bileşenlerinin COVID-19'a karşı potansiyel ilaç adayları olabilecekleri umut edilmektedir. Mevcut incelemenin verileri, farmasötik pazarda mevcut olan ve özellikle zarflı virüslere karşı gözle görülür aktiviteler gösteren en yaygın ve çok bilinen uçucu yağlara dair bilgi vermek için odaklanmıştır.
Anahtar Kelimeler: Antiviral ajanlar; COVID-19; uçucu yağlar; ökaliptol
- Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4(11):3044-68. [Crossref] [PubMed] [PMC]
- Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect Genet Evol. 2020;79:104211. [Crossref] [PubMed] [PMC]
- Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, et al. Coronavirus disease 2019-COVID-19. Clin Microbiol Rev. 2020;33(4):e00028-20. [Crossref] [PubMed] [PMC]
- Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020;10(8):944-50. [Crossref] [PubMed] [PMC]
- Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020;10:40. [Crossref] [PubMed] [PMC]
- Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465-522. [Crossref] [PubMed] [PMC]
- Akilligöz Y, Basaran A. Ankara ilinde yapılan etnobotanik çalışmaların, Covid-19 pandemisi üzerinde değerlendirilmesi [Evaluation of ethnobotanical studies conducted in Ankara province on Covid-19 pandemic]. Journal of Integrative and Anatolian Medicine. 2021;2(3):20-55. [Crossref]
- Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. SARS-CoV-2, the pandemic coronavirus: Molecular and structural insights. J Basic Microbiol. 2021;61(3):180-202. [Crossref] [PubMed] [PMC]
- Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. Erratum in: J Med Virol. 2020;92(10):2249. [Crossref] [PubMed] [PMC]
- Baris E, Gumustekin M, Arici MA. COVID-19 tedavisinde kullanılan ilaçların güvenliliği [Safety of drugs used in the treatment of Covid-19]. J DEU Med. 2021;35(50):19-33. [Crossref]
- Koyama S, Kondo K, Ueha R, Kashiwadani H, Heinbockel T. Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. Int J Mol Sci. 2021;22(16):8912. [Crossref] [PubMed] [PMC]
- Liu JZ, Lyu HC, Fu YJ, Cui Q. Amomum tsao-ko essential oil, a novel anti-COVID-19 Omicron spike protein natural products: A computational study. Arab J Chem. 2022;15(7):103916. [Crossref] [PubMed] [PMC]
- Lam S, Lombardi A, Ouanounou A. COVID-19: A review of the proposed pharmacological treatments. Eur J Pharmacol. 2020;886:173451. [Crossref] [PubMed] [PMC]
- Khaliq B, Ali N, Akrem A, Ashraf MY, Malik A, Tahir A, Zia-Ul-Haq M. Medicinal plants against Covid-19. In: Ahmedah HT, Riaz M, Sagheer A, Moga MA, eds. The Covid-19 Pandemic: A Multidisciplinary Review of Diagnosis, Prevention, and Treatment. 1st ed. Taylor & Francis eBooks DRM Free Collection; 2022. p.297-337. [Crossref]
- Chilamakuri R, Agarwal S. COVID-19: Characteristics and Therapeutics. Cells. 2021;10(2):206. [Crossref] [PubMed] [PMC]
- Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3(1):237-61. [Crossref] [PubMed] [PMC]
- Serrano-Barrera OR. Phylogenetic analysis of the human receptor of SARS-CoV-2 coronavirus and its implications for the biology of infection. Revista Electrónica Dr Zoilo E Marinello Vidaurreta. 2020;45(3). [Link]
- Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. [Crossref] [PubMed] [PMC]
- Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862. [Crossref] [PubMed]
- Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res. 2020;126(10):1456-74. [Crossref] [PubMed] [PMC]
- Adao R, Guzik JT. Inside the heart of Covid-19. Cardiovascular Research. American Medical Association. 2020;323(11):1061-9. [Crossref] [PubMed] [PMC]
- Gąsecka A, Borovac JA, Guerreiro RA, Giustozzi M, Parker W, Caldeira D, et al. Thrombotic complications in patients with COVID-19: pathophysiological mechanisms, diagnosis, and treatment. Cardiovasc Drugs Ther. 2021;35(2):215-29. [Crossref] [PubMed] [PMC]
- Alp Ş, Ünal S. Yeni koronavirüs (SARS-CoV-2) kaynaklı pandemi: Gelişmeler ve güncel durum [Novel coronavirus (SARS-CoV-2) pandemic: overview and current status]. Flora the Journal of Infectious Diseases and Clinical Microbiology. 2020;25(2):111-20. [Crossref]
- Guo S, Geng Z, Zhang W, Liang J, Wang C, Deng Z, et al. The chemical composition of essential oils from cinnamomum camphora and their insecticidal activity against the stored product pests. Int J Mol Sci. 2016;17(11):1836. [Crossref] [PubMed] [PMC]
- Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-43. Erratum in: JAMA Intern Med. 2020;180(7):1031. [Crossref] [PubMed] [PMC]
- Tirado-Kulieva VA, Hernández-Martínez E, Choque-Rivera TJ. Phenolic compounds versus SARS-CoV-2: An update on the main findings against COVID-19. Heliyon. 2022;8(9):e10702. [Crossref] [PubMed] [PMC]
- Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016;2016:3012462. [Crossref] [PubMed] [PMC]
- Amira L, Mansour A, Bechlem H. Systematic review essential oils for SARS-CoV-2 prevention and treatment: Systematic review. J Mol Pharm Sci. 2021;1(1):53-63. [Link]
- Malabadi RB, Kolkar KP, Meti NT, Chalannavar RK. Role of botanical essential oils as a therapy for controlling coronavirus (SARS-CoV-2) disease (Covid-19). International Journal of Research and Scientific Innovation. 2021;8(4):105-18. [Crossref]
- Palai S, Kesh SS. Essential oils: An effective therapeutic strategy against SARS-CoV-2. International Journal of Bio-resource and Stress Management. 2021;12(6):719-24. [Crossref]
- Silva JKRD, Figueiredo PLB, Byler KG, Setzer WN. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. Int J Mol Sci. 2020;21(10):3426. [Crossref] [PubMed] [PMC]
- Rathod R, Mohindra R, Vijayakumar A, Soni RK, Kaur R, Kumar A, et al. Essential oil nebulization in mild COVID-19(EONCO): Early phase exploratory clinical trial. J Ayurveda Integr Med. 2022;13(3):100626. [Crossref] [PubMed] [PMC]
- Asif M, Saleem M, Saadullah M, Yaseen HS, Al Zarzour R. COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties. Inflammopharmacology. 2020;28(5):1153-61. Erratum in: Inflammopharmacology. 2021;29(2):577. [Crossref] [PubMed] [PMC]
- Kulkarni SA, Nagarajan SK, Ramesh V, Palaniyandi V, Selvam SP, Madhavan T. Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein. J Mol Struct. 2020;1221:128823. [Crossref] [PubMed] [PMC]
- Yadalam PK, Varatharajan K, Rajapandian K, Chopra P, Arumuganainar D, Nagarathnam T, et al. Antiviral essential oil components against SARS-CoV-2 in pre-procedural mouth rinses for dental settings during COVID-19: A Computational Study. Front Chem. 2021;9:642026. [Crossref] [PubMed] [PMC]
- Li J, Chen W, Liu H, Liu H, Xiang S, You F, et al. Pharmacologic effects approach of essential oils and their components on respiratory diseases. J Ethnopharmacol. 2023;304:115962. [Crossref] [PubMed]
- Valussi M, Antonelli M, Donelli D, Firenzuoli F. Appropriate use of essential oils and their components in the management of upper respiratory tract symptoms in patients with COVID-19. J Herb Med. 2021;28:100451. [Crossref] [PubMed] [PMC]
- Hawkins J, Hires C, Keenan L, Dunne E. Aromatherapy blend of thyme, orange, clove bud, and frankincense boosts energy levels in post-COVID-19 female patients: A randomized, double-blinded, placebo controlled clinical trial. Complement Ther Med. 2022;67:102823. [Crossref] [PubMed] [PMC]
- Sharma AD, Kaur I. Jensenone from eucalyptus essential oil as a potential inhibitor of Covid 19 corona virus infection. Research & Reviews in Biotechnology & Biosciences. 2020;7(1):59-66. [Link]
- Sharma AD, Kaur I. Molecular docking and pharmacokinetic screening of eucalyptol (1,8 cineole) from eucalyptus essential oil against SARS-CoV-2. Not Sci Biol. 2020;12(3):536-45. [Crossref]
- Sharma AD, Kaur I. Eucalyptus essential oil bioactive molecules from against SARS-CoV-2 spike protein: insights from computational studies. Res Sq. 2021. [Crossref]
- Panikar S, Shoba G, Arun M, Sahayarayan JJ, Usha Raja Nanthini A, Chinnathambi A, et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health. 2021;14(5):601-10. [Crossref] [PubMed] [PMC]
- Ojah EO. Exploring essential oils as prospective therapy against the ravaging coronavirus (SARS-CoV-2). Iberoamerican Journal of Medicine. 2020;4(2):322-30. [Crossref]
- Tshibangu DST, Matondo A, Lengbiye EM, Inkoto CL, Ngoyi EM, Kabengele CN, et al. Possible effect of aromatic plants and essential oils against Covid-19: review of their antiviral activity. Journal of Complementary and Alternative Medical Research. 2020;11(1):10-22. [Crossref]
- Fazmiya MJA, Sultana A, Rahman K, Heyat MBB, Sumbul, Akhtar F, et al. Current Insights on Bioactive Molecules, Antioxidant, Anti-Inflammatory, and Other Pharmacological Activities of Cinnamomum camphora Linn. Oxid Med Cell Longev. 2022;2022:9354555. [Crossref] [PubMed] [PMC]
- Ahmed NZ, John Davis GD, Khan AA, Prabhakar L, Ram Paratap M, Afnaan Z, Devi Sri M, Anwar N. Arq Ajīb-a wonder Unani formulation for inhibiting SARS-CoV-2 spike glycoprotein and main protease-an in silico approach. J Complement Integr Med. 2022;9(6):152-5. [Crossref] [PubMed]
- Cui Q, Wang LT, Liu JZ, Wang HM, Guo N, Gu CB, et al. Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1061-1062:364-71. [Crossref] [PubMed]
- Sabulal N, Baby S. Chemistry of Amomum essential oils. Journal of Essential Oil Research. 2021;33(5):427-41. [Crossref]
- Valiakos E, Marselos M, Sakellaridis N, Constantinidis T, Skaltsa H. Ethnopharmacological approach to the herbal medicines of the "Antidotes" in Nikolaos Myrepsos׳ Dynameron. J Ethnopharmacol. 2015;163:68-82. [Crossref] [PubMed]
- Sim S, Tan SK, Kohlenberg B, Braun NA. Amomum tsao-ko-Chinese black cardamom: Detailed oil composition and comparison with two other cardamom species. Nat Prod Commun. 2019;14(7):1934578X1985767. [Crossref]
- Dziri S, Casabianca H, Hanchi B, Hosni K. Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. Journal of Essential Oil Research. 2014;26(2):91-6. [Crossref]
- Park HY, Kim ND, Kim GY, Hwang HJ, Kim BW, Kim WJ, et al. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia. Toxicol Appl Pharmacol. 2012;262(2):177-84. [Crossref] [PubMed]
- Thuy BTP, My TTA, Hai NTT, Hieu LT, Hoa TT, Thi Phuong Loan H, et al. Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil. ACS Omega. 2020;5(14):8312-20. Erratum in: ACS Omega. 2020;5(26):16315. [Crossref] [PubMed] [PMC]
- Islam MN, Hossain KS, Sarker PP, Ferdous J, Hannan MA, Rahman MM, et al. Revisiting pharmacological potentials of Nigella sativa seed: A promising option for COVID-19 prevention and cure. Phytother Res. 2021;35(3):1329-44. [Crossref] [PubMed] [PMC]
- Kokoska L, Havlik J, Valterova I, Sovova H, Sajfrtova M, Jankovska I. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods. J Food Prot. 2008;71(12):2475-80. [Crossref] [PubMed]
- El Gazzar MA. Thymoquinone suppressses in vitro production of IL-5 and IL-13 by mast cells in response to lipopolysaccharide stimulation. Inflamm Res. 2007;56(8):345-51. [Crossref] [PubMed]
- Esharkawy ER, Almalki F, Hadda TB. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorg Chem. 2022;120:105587. [Crossref] [PubMed] [PMC]
- Torres Neto L, Monteiro MLG, Fernández-Romero J, Teleshova N, Sailer J, Conte Junior CA. Essential oils block cellular entry of SARS-CoV-2 delta variant. Sci Rep. 2022;12(1):20639. [Crossref] [PubMed] [PMC]
- Senthil Kumar KJ, Gokila Vani M, Wang CS, Chen CC, Chen YC, Lu LP, et al. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants (Basel). 2020;9(6):770. [Crossref] [PubMed] [PMC]
- Ali IBE, Tajini F, Boulila A, Jebri MA, Boussaid M, Messaoud C, et al. Bioactive compounds from Tunisian Pelargonium graveolens (L'Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Ind Crops Prod. 2020;158:112951. [Crossref]
- Nabissi M, Marinelli O, Morelli MB, Nicotra G, Iannarelli R, Amantini C, et al. Thyme extract increases mucociliary-beating frequency in primary cell lines from chronic obstructive pulmonary disease patients. Biomed Pharmacother. 2018;105:1248-53. [Crossref] [PubMed]
- Almaqtari M. Chemical composition and antimicrobial activity of essential oil of Thymus vulgaris from Yemen. Turkish Journal of Biochemistry. 2011;36(4):342-9. [Link]
- Yadav PK, Jaiswal A, Singh RK. In silico study on spice-derived antiviral phytochemicals against SARS-CoV-2 TMPRSS2 target. J Biomol Struct Dyn. 2022;40(22):11874-84. [Crossref] [PubMed]
- Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn. 2021;39(10):3760-70. [Crossref] [PubMed] [PMC]
- Borugă O, Jianu C, Mişcă C, Goleţ I, Gruia AT, Horhat FG. Thymus vulgaris essential oil: chemical composition and antimicrobial activity. J Med Life. 2014;7 Spec No. 3(Spec Iss 3):56-60. [PubMed] [PMC]
- Sardari S, Mobaien A, Ghassemifard L, Kamali K, Khavasi N. Therapeutic effect of thyme (Thymus vulgaris) essential oil on patients with Covid19: A randomized clinical trial. Journal of Advances in Medical and Biomedical Research. 2021;29(133):83-91. [Crossref]
- Şakalar Ç, Ertürk M. Inactivation of airborne SARS-CoV-2 by thyme volatile oil vapor phase. J Virol Methods. 2023;312:114660. [Crossref] [PubMed] [PMC]
- Sahin Basak S, Candan F. Effect of laurus nobilis L. essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran J Pharm Res. 2013;12(2):367-79. [PubMed] [PMC]
- Sayyah M, Saroukhani G, Peirovi A, Kamalinejad M. Analgesic and anti-inflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytother Res. 2003;17(7):733-6. [Crossref] [PubMed]
- Loizzo MR, Saab AM, Tundis R, Statti GA, Menichini F, Lampronti I, et al. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem Biodivers. 2008;5(3):461-70. [Crossref] [PubMed] [PMC]
- Roviello V, Roviello GN. Lower COVID-19 mortality in Italian forested areas suggests immunoprotection by Mediterranean plants. Environ Chem Lett. 2021;19(1):699-710. [Crossref] [PubMed] [PMC]
- Le Bon SD, Konopnicki D, Pisarski N, Prunier L, Lechien JR, Horoi M. Efficacy and safety of oral corticosteroids and olfactory training in the management of COVID-19-related loss of smell. Eur Arch Otorhinolaryngol. 2021;278(8):3113-7. [Crossref] [PubMed] [PMC]
- Bahl AS, Verma VK, Bhatia J, Arya DS. Integrating in silico and in vivo approach for investigating the role of polyherbal oil in prevention and treatment of COVID-19 infection. Chem Biol Interact. 2022;367:110179. [Crossref] [PubMed] [PMC]
- Pelvan E, Serhatlı M, Karaoğlu Ö, Karadeniz B, Pembeci Kodolbaş C, Aslı Öncü N, et al. Development of propolis and essential oils containing oral/throat spray formulation against SARS-CoV-2 infection. J Funct Foods. 2022;97:105225. [Crossref] [PubMed] [PMC]
- Lionis C, Karakasiliotis I, Petelos E, Linardakis M, Diamantakis A, Symvoulakis E, et al. A mixture of essential oils from three Cretan aromatic plants (thyme, 2 Greek sage and Cretan dittany, CAPeo) inhibits SASR-CoV- 2 proliferation: in vitro evidence and a proof of concept intervention study in mild ambulatory Covid-19-positive patients. MedRxiv. 2021. [Crossref]
.: Process List