Amaç: Bu çalışmanın amacı, Polar Team Pro (Polar Elektronik, Kempele, Finland) GPS sistemlerinden gerçek zamanlı ve müsabaka sonrası elde edilen verileri karşılaştırmaktır. Gereç ve Yöntemler: Çalışmada, futbol müsabakası esnasında GPS sistemleri 16 futbol oyuncusuna (yaş: 19; boy: 176,75±5; kilo: 176,75±9,47) takılmıştır. Elde edilen veriler, gerçek zamanlı ve müsabaka sonrasında kayıt altına alınmıştır. Her 2 ölçüm değerleri arasındaki istatistiksel farkın belirlenmesi için eşleştirilmiş t-testi uygulandıktan sonra 2 ölçüm arasındaki ilişki düzeyi, Pearson korelasyon analizi aracılığıyla belirlenmiştir. Değişkenler, doğrusal regresyon analizi yapılarak değerlendirildi ve basit doğrusal regresyon analizi yapıldı. Bulgular: Müsabakalar esnasında elde edilen gerçek zamanlı ve müsabaka sonrasındaki veriler arasında istatistiksel olarak anlamlı bir farklılık görülmemiştir. Tüm değişkenlere ait güçlü derecede ilişki tespit edilmiştir. Sonuç: Yapılan bu çalışmadan elde edilen sonuçların ışığında, Polar Team Pro GPS sisteminin gerçek zamanlı ve müsabaka sonrasındaki verileri, spor bilimciler ve antrenörler tarafından antrenmanların takibi için rahatlıkla karşılaştırılabilir durumdadır.
Anahtar Kelimeler: GPS; teknoloji; MEMS; antrenman yükü
Objective: The aim of this study is to compare realtime and post-match data from Polar Team Pro GPS systems. Material and Methods: In the study, GPS systems were attached to 16 football players (age: 19, height: 176.75±5, weight: 176.75±9.47) during the football competition. The data obtained were recorded in real time and after the competition. After applying the paired t-test to determine the statistical difference between both measurement values, the level of relationship between the two measurements was determined by Pearson correlation test. Parameters were evaluated by linear regression analysis and simple linear regression analysis was performed. Results: There was no statistically significant difference between real-time data obtained during competitions and post-competition data. A strong correlation was determined for all parameters. Conclusion: In the light of the results obtained from this study, Polar Team Pro GPS system can easily compare the real-time and postmatch data for the tracking of the training by sports scientists and coaches.
Keywords: GPS; technology; MEMS; training load
- Weaving D, Whitehead S, Till K, Jones B. Validity of real-time data generated by a wearable microtechnology device. J Strength Cond Res. 2017;31(10):2876-9.[Crossref] [PubMed]
- Akyıldız Z. [Training load]. CBÜ Beden Eğitimi ve Spor Bilim Derg. 2019;14(2):152-75.[Crossref]
- Seshadri DR, Li RT, Voos JE, Rowbottom JR, Alfes CM, Zorman CA, et al. Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit Med. 2019;2:71.[Crossref] [PubMed] [PMC]
- Barrett S. Monitoring elite soccer players' external loads using real-time data. Int J Sports Physiol Perform. 2017;12(10):1285-7.[Crossref] [PubMed]
- McLaren SJ, Macpherson TW, Coutts AJ, Hurst C, Spears IR, Weston M. The relationships between internal and external measures of training load and intensity in team sports: a meta-analysis. Sports Med. 2018;48(3):641-58.[Crossref] [PubMed]
- Boyd LJ, Ball K, Aughey RJ. The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform. 2011;6(3):311-21.[Crossref] [PubMed]
- Dalen T, Ingebrigtsen J, Ettema G, Hjelde GH, Wisløff U. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J Strength Cond Res. 2016;30(2):351-9.[Crossref] [PubMed]
- da Glória Teles Bredt S, Chagas MH, Peixoto GH, Menzel HJ, de Andrade AGP. Understanding player load: meanings and limitations. J Hum Kinet. 2020;71:5-9.[Crossref] [PubMed] [PMC]
- Mascherini G, Cattozzo A, Galanti G, Fiorini S. Kinematic profile in soccer players. Int J Sport Sci. 2014;4(6A):42-8.
- Stevens T GA, de Ruiter CJ, van Niel C, van de Rhee R, Beek PJ, Savelsbergh GJP. Measuring acceleration and deceleration in soccer-specific movements using a local position measurement (LPM) system. Int J Sports Physiol Perform. 2014;9(3):446-56.[Crossref] [PubMed]
- Bourdon PC, Cardinale M, Murray A, Gastin P, Kellmann M, Varley MC, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(Suppl 2):S2161-70.[Crossref] [PubMed]
- Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273-80.[Crossref] [PubMed] [PMC]
- Martín-García A, Gómez Díaz A, Bradley PS, Morera F, Casamichana D. Quantification of a professional football team's external load using a microcycle structure. J Strength Cond Res. 2018;32(12):3511-8.[Crossref] [PubMed]
- Schubert MM, Clark A, De La Rosa AB. The Polar® OH1 optical heart rate sensor is valid during moderate-vigorous exercise. Sports Med Int Open. 2018;2(3):E67-70.[Crossref] [PubMed] [PMC]
- Castellano J, Casamichana D, Calleja-González J, Román JS, Ostojic SM. Reliability and accuracy of 10 Hz GPS devices for short-distance exercise. J Sports Sci Med. 2011;10(1):233-4.[PubMed]
- Hoppe MW, Baumgart C, Polglaze T, Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS One. 2018;13(2):e0192708.[Crossref] [PubMed] [PMC]
- Buchheit M, Simpson BM. Player-tracking technology: half-full or half-empty glass? Int J Sports Physiol Perform. 2017;12(Suppl 2):S235-41.[Crossref] [PubMed]
- Akenhead R, French D, Thompson KG, Hayes PR. The acceleration dependent validity and reliability of 10 Hz GPS. J Sci Med Sport. 2014;17(5):562-6.[Crossref] [PubMed]
- Aughey RJ, Falloon C. Real-time versus post-game GPS data in team sports. J Sci Med Sport. 2010;13(3):348-9.[Crossref] [PubMed]
- Iturricastillo A, Granados C, Yanci J. Changes in body composition and physical performance in wheelchair basketball players during a competitive season. J Hum Kinet. 2015;48:157-65.[Crossref] [PubMed] [PMC]
- Reinhardt L, Schwesig R, Lauenroth A, Schulze S, Kurz E. Enhanced sprint performance analysis in soccer: new insights from a GPS-based tracking system. PLoS One. 2019;14(5):e0217782.[Crossref] [PubMed] [PMC]
- Conners RT, Whitehead PN, Shimizu TS, Bailey JD. Coaching and technology: live team monitoring to improve training and safety. Strategies. 2018;31(5):15-20.[Crossref]
- Dalen T, Lorås H. Monitoring training and match physical load in junior soccer players: starters versus substitutes. Sports (Basel). 2019;7(3):70.[Crossref] [PubMed] [PMC]
- Marszałek J, Gryko K, Kosmol A, Morgulec-Adamowicz N, Mróz A, Molik B. Wheelchair basketball competition heart rate profile according to players' functional classification, tournament level, game type, game quarter and playing time. Front Psychol. 2019;10:773.[Crossref] [PubMed] [PMC]
- Marszałek J, Gryko K, Prokopowicz G, Kosmol A, Mróz A, Morgulec-Adamowicz N, et al. The physiological response of athletes with impairments in wheelchair basketball game. Hum Mov. 2019;20(4):1-7.[Crossref]
- Fox JL, O'Grady CJ, Scanlan AT, Sargent C, Stanton R. Validity of the Polar Team Pro Sensor for measuring speed and distance indoors. J Sci Med Sport. 2019;22(11):1260-5.[Crossref] [PubMed]
- Hopkins WG. A new view of statistics: home page. (Accessed: 16.3.2020) https://www.sportsci.org/resource/stats/newview.html
- Buchheit M, Haddad HA, Simpson BM, Palazzi D, Bourdon PC, Di Salvo V, et al. Monitoring accelerations with GPS in football: time to slow down. Int J Sports Physiol Perform. 2014;9(3):442-5.[Crossref] [PubMed]
.: Process List