Pestisitler; böcekler, kemirgenler, yabani otlar ve mantarlar gibi istenmeyen zararlıları yok etmek için tasarlanmış çeşitli kimyasal madde veya maddeler karışımıdır. Pestisitler, zararlı olduğu düşünülen bu organizmaları kontrol ederek birçok fayda sağlar, bu da ürün verimi ve kalitesinde iyileşme, hastalıkların kontrolü ve malların bozulmadan korunmasıyla maddi tasarruflarla sonuçlanır. Bununla birlikte, pestisitlerin çeşitli olumsuz sağlık etkilerine yol açtığına dair çalışmalar da son yıllarda büyük ilgi görmektedir. Klorlu hidrokarbonlar, organik fosforlular, karbamatlar, piretroidler ve piretrinler dâhil olmak üzere çok çeşitli pestisitler mevcuttur. Pestisitlerin tarımda izin verilen limitler dışında kullanımının yanı sıra yüksek dozda intihar amaçlı veya yanlış kullanımları sonucu, gerek insan sağlığı gerekse çevre sağlığı olumsuz etkilenebilmektedir. Pestisitlere maruz kalma başlıca oral, deri ve solunum yoluyla gerçekleşir. Pestisit maruziyeti, iş yerlerinde mesleki maruziyet kaynağı olarak veya normal yaşam ortamlarında meydana gelebilir. Pestisit maruziyeti açısından özellikle üretim, taşınma, hazırlanma ve uygulanmasında çalışan işçiler önemli bir risk grubudur. İlave olarak, pestisit uygulama alanlarına yakın bölgelerde yaşayan kişiler ile söz konusu ürünlerle kontamine gıdaları tüketen kişiler de pestisit maruziyeti açısından önemli gruplardır. İmmün sistem, konağın sağlığı üzerinde ciddi istenmeyen etkileri olan birçok fiziksel, kimyasal veya biyolojik maddenin hedefi olabilir. Pestisitlerin neden olduğu immün sistem işlevindeki değişiklikler, immünotoksisite olarak tanımlanmakta ve pestisitlere maruz kalmanın immün sistem bütünlüğü üzerindeki istenmeyen etkileri, son zamanlarda büyük ilgi görmektedir. Pestisitlere kronik maruz kalmaya bağlı istenmeyen etkiler arasında aşırı duyarlılık reaksiyonları, bazı otoimmün hastalıklar ve kanserler gibi bağışıklık sistemi cevabında değişiklikleri sayılabilir. Bu bileşiklerin, toksisite risklerini belirleyen hayvan çalışmaları uzun süreli olup gerçekleştirilmesi de maliyetlidir. Günümüzde, pestisitlerin immünotoksik etkilerinin hızlı bir şekilde belirlenebilmesi için basit, tekrarlanabilir ve güvenilir in vitro test sistemleri aracılığıyla gerçekleştirilen çalışmalar yardımıyla kullanılan deney hayvanı sayısının azaltılması ve hayvan refahının artırılması hedeflemektedir. Bu derleme kapsamında, yaygın olarak kullanılan pestisitler ve bu pestisitlerin olası immünotoksik etkileri hakkında güncel bilgilerin sunulması amaçlanmıştır.
Anahtar Kelimeler: Zehirlilik; pestisitler; toksikoloji; bağışıklık sistemi; toksik etkiler
Pesticides are a variety of chemicals or mixtures of substances designed to destroy unwanted pests such as insects, rodents, weeds and fungi. Pesticides provide many benefits by controlling organisms that are considered to be harmful, which results in improved crop yields and quality, disease control, and monetary savings due to protection of the commodity from deterioration. However, pesticides have various adverse health effects that have recently gained a great deal of attention. A wide variety of pesticides exist, including organochlorines, organophosphates, carbamates, pyrethroids, pyrethrins. In addition to the use of pesticides outside the permitted limits, both human and environmental health can be negatively affected as a result of high doses of suicidal or improper uses. The main ways of exposure to pesticides are through oral, skin and respiration. Pesticide exposure can occur in workplaces or normal living environments as a source of occupational exposure. Workers working in the production, transportation, preparation and application of pesticides are an important risk group in terms of exposure. In addition, people living in areas close to pesticide application areas and consumption of foods contaminated with the products in question may also be other important sources of exposure. The immune system can be the target of many physical, chemical or biological substances that have serious adverse effects on the health of the host. Recently, changes in immune system function caused by pesticides are defined as immunotoxicity, and the adverse effects of exposure to pesticides on immune system integrity have received great attention. Undesirable effects due to chronic exposure to pesticides include changes in the immune system response such as hypersensitivity reactions, some autoimmune diseases and cancers. Animal studies that determine the toxicity risks of these compounds are long-term and costly to practice. Nowadays, in order to determine the immunotoxic effects of pesticides quickly; in vitro test systems can help to reduce the number of experimental animals used and increase animal welfare with simple, reproducible and reliable techniques. The aim of this review is to provide information about commonly used pesticides and the possible immunotoxic effects of these pesticides.
Keywords: Toxicity; pesticides; toxicology; immune system; toxic actions
- Brundage KM, Barnett JB. Immunotoxicity of pesticides. In: Krieger R, ed. Hayes' Handbook of Pesticide Toxicology. 3rd ed. USA: Academic Press; 2010. p.483-97. [Crossref]
- Lee GH, Choi KC. Adverse effects of pesticides on the functions of immune system. Comp Biochem Physiol C Toxicol Pharmacol. 2020;235:108789. [Crossref] [PubMed]
- Pistl J, Kovalkovicová N, Holovská V, Legáth J, Mikula I. Determination of the immunotoxic potential of pesticides on functional activity of sheep leukocytes in vitro. Toxicology. 2003;188(1):73-81. [Crossref] [PubMed]
- Corsini E, Sokooti M, Galli CL, Moretto A, Colosio C. Pesticide induced immunotoxicity in humans: a comprehensive review of the existing evidence. Toxicology. 2013;307:123-35. [Crossref] [PubMed]
- Mokarizadeh A, Faryabi MR, Rezvanfar MA, Abdollahi M. A comprehensive review of pesticides and the immune dysregulation: mechanisms, evidence and consequences. Toxicol Mech Methods. 2015;25(4):258-78. [Crossref] [PubMed]
- Galloway T, Handy R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology. 2003;12(1-4):345-63. [Crossref] [PubMed]
- Corsini E, Liesivuori J, Vergieva T, Van Loveren H, Colosio C. Effects of pesticide exposure on the human immune system. Hum Exp Toxicol. 2008;27(9):671-80. [Crossref] [PubMed]
- Pruett SB, Zheng Q, Schwab C, Fan R. Sodium methyldithiocarbamate inhibits MAP kinase activation through toll-like receptor 4, alters cytokine production by mouse peritoneal macrophages, and suppresses innate immunity. Toxicol Sci. 2005;87(1):75-85. [Crossref] [PubMed]
- Keil DE, Padgett EL, Barnes DB, Pruett SB. Role of decomposition products in sodium methyldithiocarbamate-induced immunotoxicity. J Toxicol Environ Health. 1996;47(5):479-92. [Crossref] [PubMed]
- Chung AH, Pyo MY. Effects of mancozeb on the activities of murine peritoneal macrophages in vitro and ex vivo. Arch Pharm Res. 2005;28(1):100-5. [Crossref] [PubMed]
- Corsini E, Birindelli S, Fustinoni S, De Paschale G, Mammone T, Visentin S, et al. Immunomodulatory effects of the fungicide Mancozeb in agricultural workers. Toxicol Appl Pharmacol. 2005;208(2):178-85. [Crossref] [PubMed]
- Colosio C, Fustinoni S, Corsini E, Bosetti C, Birindelli S, Boers D, et al. Changes in serum markers indicative of health effects in vineyard workers following exposure to the fungicide mancozeb: an Italian study. Biomarkers. 2007;12(6):574-88. [Crossref] [PubMed]
- Jeon SD, Lim JS, Moon CK. Carbofuran suppresses T-cell-mediated immune responses by the suppression of T-cell responsiveness, the differential inhibition of cytokine production, and NO production in macrophages. Toxicol Lett. 2001;119(2):143-55. [Crossref] [PubMed]
- Casale GP, Vennerstrom JL, Bavari S, Wang TL. Inhibition of interleukin 2 driven proliferation of mouse CTLL2 cells, by selected carbamate and organophosphate insecticides and congeners of carbaryl. Immunopharmacol Immunotoxicol. 1993;15(2-3):199-215. [Crossref] [PubMed]
- Hong CC, Shimomura-Shimizu M, Muroi M, Tanamoto K. Effect of endocrine disrupting chemicals on lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production by mouse macrophages. Biol Pharm Bull. 2004;27(7):1136-9. [Crossref] [PubMed]
- Voccia I, Blakley B, Brousseau P, Fournier M. Immunotoxicity of pesticides: a review. Toxicol Ind Health. 1999;15(1-2):119-32. [Crossref] [PubMed]
- Vine MF, Stein L, Weigle K, Schroeder J, Degnan D, Tse CK, et al. Effects on the immune system associated with living near a pesticide dump site. Environ Health Perspect. 2000;108(12):1113-24. [Crossref] [PubMed] [PMC]
- Cooper GS, Martin SA, Longnecker MP, Sandler DP, Germolec DR. Associations between plasma DDE levels and immunologic measures in African-American farmers in North Carolina. Environ Health Perspect. 2004;112(10):1080-4. [Crossref] [PubMed] [PMC]
- Kaminski NE, Wells DS, Dauterman WC, Roberts JF, Guthrie FE. Macrophage uptake of a lipoprotein-sequestered toxicant: a potential route of immunotoxicity. Toxicol Appl Pharmacol. 1986;82(3):474-80. [Crossref] [PubMed]
- McConnachie PR, Zahalsky AC. Immune alterations in humans exposed to the termiticide technical chlordane. Arch Environ Health. 1992;47(4):295-301. [Crossref] [PubMed]
- Schaalan MF, Abdelraouf SM, Mohamed WA, Hassanein FS. Correlation between maternal milk and infant serum levels of chlorinated pesticides (CP) and the impact of elevated CP on bleeding tendency and immune status in some infants in Egypt. J Immunotoxicol. 2012;9(1):15-24. [Crossref] [PubMed]
- Quaranta MG, Porpora MG, Mattioli B, Giordani L, Libri I, Ingelido AM, et al. Impaired NK-cell-mediated cytotoxic activity and cytokine production in patients with endometriosis: a possible role for PCBs and DDE. Life Sci. 2006;79(5):491-8. [Crossref] [PubMed]
- Lee DH, Jacobs DR, Kocher T. Associations of serum concentrations of persistent organic pollutants with the prevalence of periodontal disease and subpopulations of white blood cells. Environ Health Perspect. 2008;116(11):1558-62. [Crossref] [PubMed] [PMC]
- Brooks K, Hasan H, Samineni S, Gangur V, Karmaus W. Placental p,p'-dichlorodiphenyldichloroethylene and cord blood immune markers. Pediatr Allergy Immunol. 2007;18(7):621-4. [Crossref] [PubMed]
- Corsini E, Codecà I, Mangiaratti S, Birindelli S, Minoia C, Turci R, et al. Immunomodulatory effects of the herbicide propanil on cytokine production in humans: In vivo and in vitro exposure. Toxicol Appl Pharmacol. 2007;222(2):202-10. [Crossref] [PubMed]
- Li Q. New mechanism of organophosphorus pesticide-induced immunotoxicity. J Nippon Med Sch. 2007;74(2):92-105. [Crossref] [PubMed]
- Johnson VJ, Rosenberg AM, Lee K, Blakley BR. Increased T-lymphocyte dependent antibody production in female SJL/J mice following exposure to commercial grade malathion. Toxicology. 2002;170(1-2):119-29. [Crossref] [PubMed]
- Banerjee BD, Pasha ST, Hussain QZ, Koner BC, Ray A. A comparative evaluation of immunotoxicity of malathion after subchronic exposure in experimental animals. Indian J Exp Biol. 1998;36(3):273-82. [PubMed]
- Rodgers K, Ellefson D. Mechanism of the modulation of murine peritoneal cell function and mast cell degranulation by low doses of malathion. Agents Actions. 1992;35(1-2):57-63. [Crossref] [PubMed]
- Ayub S, Verma J, Das N. Effect of endosulfan and malathion on lipid peroxidation, nitrite and TNF-alpha release by rat peritoneal macrophages. Int Immunopharmacol. 2003;3(13-14):1819-28. [Crossref] [PubMed]
- Duramad P, Tager IB, Leikauf J, Eskenazi B, Holland NT. Expression of Th1/Th2 cytokines in human blood after in vitro treatment with chlorpyrifos, and its metabolites, in combination with endotoxin LPS and allergen Der p1. J Appl Toxicol. 2006;26(5):458-65. [Crossref] [PubMed]
- Gallicchio VS, Casale GP, Watts T. Inhibition of human bone marrow-derived stem cell colony formation (CFU-E, BFU-E, and CFU-GM) following in vitro exposure to organophosphates. Exp Hematol. 1987;15(11):1099-102. [PubMed]
- Hadnagy W, Leng G, Sugiri D, Ranft U, Idel H. Pyrethroids used indoors--immune status of humans exposed to pyrethroids following a pest control operation--a one year follow-up study. Int J Hyg Environ Health. 2003;206(2):93-102. [Crossref] [PubMed]
- Müller-Mohnssen H. Chronic sequelae and irreversible injuries following acute pyrethroid intoxication. Toxicol Lett. 1999;107(1-3):161-76. [Crossref] [PubMed]
- Zhang Y, Zhao M, Jin M, Xu C, Wang C, Liu W. Immunotoxicity of pyrethroid metabolites in an in vitro model. Environ Toxicol Chem. 2010;29(11):2505-10. [Crossref] [PubMed]
.: Process List