Amaç: Bu çalışmada, yeni bir biyometri yöntemi olarak kullanıma giren, optik koherens tomografi biyometrisi (B-OKT) olan Revo NX tarafından yapılan optik biyometrik ölçümleri, 2 onaylı biyometri cihazı olan IOLMaster 700 ve Lenstar LS-900 ile karşılaştırmayı amaçladık. Gereç ve Yöntemler: Bu retrospektif çalışmada, 80 yaş altındaki olguların kayıtları tarandı ve optik biyometrik ölçümleri arasında korelasyon analizi yapıldı. B-OKT olan Revo NX, IOLMaster 700, Lenstar kullanılarak ölçülmüş olan; aksiyel uzunluk [axial length (AL)], ön kamara derinliği (ÖKD), lens kalınlığı (LK) ve santral kornea kalınlığı (SKK) değerleri arasındaki uyum karşılaştırıldı. Ölçümlerin benzerliği, sınıf içi korelasyon katsayıları [inter class correlation (ICC)] değerlendirilerek kıyaslandı. Her üç cihazla da ölçüm hatası oranları kaydedildi ve karşılaştırıldı. Bulgular: Çalışmaya yaşları 14-77 arasında olan 33 kadın ve 28 erkek olmak üzere toplam 61 olgu alınmıştır. Revo NX, Lenstar ve IOLMaster grupları arasında AL, ÖKD, LK ve SKK değerleri karşılaştırıldı ve gruplar arasında anlamlı fark bulunmadı. Revo NX-Lenstar-IOLMaster arasında AL, ÖKD ve LK değerlerinin uyumuna bakıldığında, yüksek derecede uyum olduğu görüldü (ICC değeri AL için 1, ÖKD için 0,997, LK için 0,990). Sonuç: Sonuç olarak Revo NX, arka segment için optimize edilmiş, oküler eksenel boyutların doğru ölçümlerini, ön segment yapılarının görüntülenmesini sağlayan ve retinayı değerlendirmek için ek bir cihaz gerektirmeyen multimodal bir görüntüleme platformu olarak kabul edilebilir. Arka ve ön segment görüntüleme için piyasada bulunan OKT cihazlarında önerilen B-OKT yönteminin uygulanması, oküler aksiyel boyutların rutin olarak ölçülmesini sağlayarak, işlevlerini genişletecektir.
Anahtar Kelimeler: Aksiyel uzunluk, göz; biyometri; optik koherens tomografi
Objective: In this study, we aimed to compare the optical biometric measurements made by Revo NX, an optical coherence tomography biometry (B-OCT), which has come into use as a new biometrics method, with the 2 approved biometrics devices IOLMaster 700 and Lenstar LS-900. Material and Methods: In this retrospective study, records of patients under 80 years of age were scanned and correlation analysis was performed between optical biometric measurements. Revo NX with B-OCT, IOLMaster 700, measured using Lenstar; The agreement between axial length (AL), anterior chamber depth (ACD), lens thickness (LT) and central corneal thickness (CCT) values were compared. The similarity of the measurements was compared by evaluating the within-class correlation coefficients (ICC). Measurement error rates were recorded and compared with all three devices. Results: A total of 61 patients, 33 female and 28 male, aged between 14-77 years, were included in the study. AL, ACD, LT and CCT values were compared between the Revo NX, Lenstar and IOLMaster groups, and no significant difference was found between the groups. Considering the compatibility of AL, ACD and LT values between Revo NX-Lenstar-IOLMaster, it was seen that there was a high degree of agreement (ICC value was 1 for AL, 0.997 for ACD, 0.990 for LT). Conclusion: In conclusion, Revo NX can be considered as a multimodal imaging platform that is optimized for the posterior segment, provides accurate measurements of ocular axial dimensions, visualization of anterior segment structures, and does not require an additional device to evaluate the retina. Implementation of the proposed B-OCT method in commercially available OCT devices for posterior and anterior segment imaging will expand their functionality by enabling routine measurement of ocular axial dimensions.
Keywords: Axial length, eye; biometrics; optical coherence tomography
- Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16(3):333-40. Erratum in: J Cataract Refract Surg 1990;16(4):528. [Crossref] [PubMed]
- Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19(6):700-12. [Crossref] [PubMed]
- Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000;26(8):1233-7. [Crossref] [PubMed]
- Santodomingo-Rubido J, Mallen EA, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol. 2002;86(4):458-62. [Crossref] [PubMed] [PMC]
- Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol. 2009;93(7):949-53. [Crossref] [PubMed]
- Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014;40(5):709-15. [Crossref] [PubMed]
- Goebels SC, Seitz B, Langenbucher A. Comparison of the new biometer OA-1000 with IOLMaster and Tomey AL-3000. Curr Eye Res. 2013;38(9):910-6. [Crossref] [PubMed]
- Mandal P, Berrow EJ, Naroo SA, Wolffsohn JS, Uthoff D, Holland D, et al. Validity and repeatability of the Aladdin ocular biometer. Br J Ophthalmol. 2014;98(2):256-8. Erratum in: Br J Ophthalmol. 2015;99(12):1746. [Crossref] [PubMed]
- Huang J, Savini G, Wu F, Yu X, Yang J, Yu A, et al. Repeatability and reproducibility of ocular biometry using a new noncontact optical low-coherence interferometer. J Cataract Refract Surg. 2015;41(10):2233-41. [Crossref] [PubMed]
- Jasvinder S, Khang TF, Sarinder KK, Loo VP, Subrayan V. Agreement analysis of LENSTAR with other techniques of biometry. Eye (Lond). 2011;25(6):717-24. [Crossref] [PubMed] [PMC]
- HAAG-STREIT AG. Lenstar LS 900. Accessed April 6, 2023 from: [Link]
- Arruda HA, Pereira JM, Neves A, Vieira MJ, Martins J, Sousa JC. Lenstar LS 900 versus Pentacam-AXL: analysis of refractive outcomes and predicted refraction. Sci Rep. 2021;11(1):1449. [Crossref] [PubMed] [PMC]
- Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schütze J, et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42(1):76-83. [Crossref] [PubMed]
- Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg. 2015;41(10):2224-32. [Crossref] [PubMed]
- Akman A, Asena L, Güngör SG. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol. 2016;100(9):1201-5. [Crossref] [PubMed] [PMC]
- Kurian M, Negalur N, Das S, Puttaiah NK, Haria D, J TS, et al. Biometry with a new swept-source optical coherence tomography biometer: Repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg. 2016;42(4):577-81. [Crossref] [PubMed]
- Hoffer KJ, Hoffmann PC, Savini G. Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42(8):1165-72. [Crossref] [PubMed]
- Arriola-Villalobos P, Almendral-Gómez J, Garzón N, Ruiz-Medrano J, Fernández-Pérez C, Martínez-de-la-Casa JM, et al. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye (Lond). 2017;31(3):437-42. [Crossref] [PubMed] [PMC]
- Bullimore MA, Slade S, Yoo P, Otani T. An evaluation of the IOLMaster 700. Eye Contact Lens. 2019;45(2):117-23. [Crossref] [PubMed]
- Sikorski BL, Suchon P. OCT Biometry (B-OCT): a new method for measuring ocular axial dimensions. J Ophthalmol. 2019;2019:9192456. [Crossref] [PubMed] [PMC]
- Hirnschall N, Leisser C, Radda S, Maedel S, Findl O. Macular disease detection with a swept-source optical coherence tomography-based biometry device in patients scheduled for cataract surgery. J Cataract Refract Surg. 2016;42(4):530-6. [Crossref] [PubMed]
- Drexler W, Sattmann H, Hermann B, Ko TH, Stur M, Unterhuber A, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol. 2003;121(5):695-706. [Crossref] [PubMed]
- Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA. Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt. 2014;19(7):071412. [Crossref] [PubMed]
- Kanclerz P, Hoffer KJ, Przewłócka K, Savini G. Comparison of an upgraded optical biometer with 2 validated optical biometers. J Cataract Refract Surg. 2021;47(7):859-64. [Crossref] [PubMed]
.: Process List