Objective: To evaluate the retinal and choroidal microvascular flow measurements in the eyes with keratoconus by using optical coherence tomography angiography (OCTA) and compared with a healthy age-gender matched control group. Material and Methods: This is a prospective case-control study in which OCTA data of 30 keratoconus patients and 30 healthy, volunteers were analyzed. The foveal avascular zone (FAZ) area, the superficial capillary plexus (SCP) deep capillary plexus (DCP) and central macular thickness (CMT) were evaluated and compared with healthy volunteers. Results: A statistically significant decrease was found in all parts of the SCP of patients with keratoconus compared to the control group. In the DCP layer, whole image (p=0.017), superior-hemi (p=0.46), inferior-hemi (p=0.021), perifoveal (p=0.013), perifoveal superior-hemi (p=0.024), perifoveal inferior (0.01), perifoveal temporal (0.03), perifoveal superior (p=0.013), perifoveal inferior (p=0.005) segments in the keratoconus group were found to be significantly lower than the healthy control group. There were no significant differences in FAZ area and CMT between the groups. Conclusion: This study demonstrates that subclinical anterior segment inflammation in keratoconus can affect the retinal vascular structure. OCTA may be a new clinical marker for evaluating disease activity in keratoconus.
Keywords: Keratoconus; optical coherence tomography angiography; vessel density; inflammation
Amaç: Keratokonuslu gözlerde retinal ve koroidal mikrovasküler akım ölçümlerini optik koherens tomografi anjiyografi (OKTA) ile değerlendirmek ve sağlıklı yaş-cinsiyet eşleştirilmiş kontrol grubu ile karşılaştırmak. Gereç ve Yöntemler: Bu, 30 keratokonus hastası ve 30 sağlıklı gönüllünün OKTA verilerinin analiz edildiği prospektif bir vaka-kontrol çalışmasıdır. Foveal avasküler bölge [foveal avascular zone (FAZ)] alanı, yüzeysel kapiller pleksus (YKP), derin kapiller pleksus (DKP) ve santral makula kalınlığı (SMK) değerlendirildi ve sağlıklı gönüllülerle karşılaştırıldı. Bulgular: Keratokonuslu hastaların YKP'sinin tüm bölümlerinde kontrol grubuna göre istatistiksel olarak anlamlı bir azalma bulundu. DKP katmanında tüm görüntü (p=0,017), superior-hemi (p=0,46), inferior-hemi (p=0,021), perifoveal (p=0,013), perifoveal superior-hemi (p=0,024), perifoveal inferior (0,01), perifoveal temporal (0,03), perifoveal superior (p=0,013), perifoveal inferior (p=0,005) segmentlerinde keratokonus grubunda sağlıklı kontrol grubuna göre anlamlı olarak düşük bulundu. Gruplar arasında FAZ alanı ve SMK'de anlamlı fark yoktu. Sonuç: Bu çalışma, keratokonusta subklinik ön segment inflamasyonunun retina damar yapısını etkileyebileceğini göstermektedir. OKTA, keratokonusta hastalık aktivitesini değerlendirmek için yeni bir klinik belirteç olabilir.
Anahtar Kelimeler: Keratokonus; optik koherens tomografi anjiyografi; damar dansitesi; inflamasyon
- Lawless M, Coster DJ, Phillips AJ, Loane M. Keratoconus: diagnosis and management. Aust N Z J Ophthalmol. 1989;17(1):33-60. [Crossref] [PubMed]
- Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28(4):293-322. [Crossref] [PubMed]
- Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297-319. [Crossref] [PubMed]
- Brunsting LA, Reed WB, Bair HL. Occurrence of cataracts and keratoconus with atopic dermatitis. AMA Arch Derm. 1955;72(3):237-41. [Crossref] [PubMed]
- Spencer WH, Fisher JJ. The association of keratoconus with atopic dermatitis. Am J Ophthalmol. 1959;47(3):332-44. [Crossref] [PubMed]
- Kemp EG, Lewis CJ. Measurement of total and specific IgE levels in the management of a family exhibiting a high incidence of keratoconus. Acta Ophthalmol (Copenh). 1984;62(4):524-9. [Crossref] [PubMed]
- Kemp EG, Lewis CJ. Immunoglobulin patterns in keratoconus with particular reference to total and specific IgE levels. Br J Ophthalmol. 1982;66(11):717-20. [Crossref] [PubMed] [PMC]
- Bawazeer AM, Hodge WG, Lorimer B. Atopy and keratoconus: a multivariate analysis. Br J Ophthalmol. 2000;84(8):834-6. [Crossref] [PubMed] [PMC]
- Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye (Lond). 2015;29(7):843-59. [Crossref] [PubMed] [PMC]
- Gutierrez-Bonet R, Ruiz-Medrano J, Pe-a-Garcia P, Catanese M, Sadeghi Y, Hashemi K, et al. Macular choroidal thickening in keratoconus patients: swept-source optical coherence tomography study. Transl Vis Sci Technol. 2018;7(3):15. [Crossref] [PubMed] [PMC]
- Aouiss A, Anka Idrissi D, Kabine M, Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr Res Transl Med. 2019;67(2):62-71. [Crossref] [PubMed]
- Pichi F, Sarraf D, Arepalli S, Lowder CY, Cunningham ET Jr, Neri P, et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res. 2017;59:178-201. [Crossref] [PubMed]
- Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res. 2017;60:66-100. [Crossref] [PubMed] [PMC]
- Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al. Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology. 2017;124(11):1589-99. [Crossref] [PubMed] [PMC]
- Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY, et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT130-40. [Crossref] [PubMed] [PMC]
- Weed KH, MacEwen CJ, Giles T, Low J, McGhee CN. The Dundee University Scottish Keratoconus study: demographics, corneal signs, associated diseases, and eye rubbing. Eye (Lond). 2008;22(4):534-41. [Crossref] [PubMed]
- Lema I, Sobrino T, Durán JA, Brea D, Díez-Feijoo E. Subclinical keratoconus and inflammatory molecules from tears. Br J Ophthalmol. 2009;93(6):820-4. [Crossref] [PubMed]
- Ionescu IC, Corbu CG, Tanase C, Ionita G, Nicula C, Coviltir V, et al. Overexpression of tear inflammatory cytokines as additional finding in keratoconus patients and their first degree family members. Mediators Inflamm. 2018;2018:4285268. [Crossref] [PubMed] [PMC]
- Kolozsvári BL, Petrovski G, Gogolák P, Rajnavölgyi É, Tóth F, Berta A, et al. Association between mediators in the tear fluid and the severity of keratoconus. Ophthalmic Res. 2014;51(1):46-51. [Crossref] [PubMed]
- Jun AS, Cope L, Speck C, Feng X, Lee S, Meng H, et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS One. 2011;6(1):e16437. [Crossref] [PubMed] [PMC]
- Pásztor D, Kolozsvári BL, Csutak A, Berta A, Hassan Z, Kettesy BA, et al. Scheimpflug imaging parameters associated with tear mediators and bronchial asthma in keratoconus. J Ophthalmol. 2016;2016:9392640. [Crossref] [PubMed] [PMC]
- Ahuja P, Dadachanji Z, Shetty R, Nagarajan SA, Khamar P, Sethu S, et al. Relevance of IgE, allergy and eye rubbing in the pathogenesis and management of Keratoconus. Indian J Ophthalmol. 2020;68(10):2067-74. [Crossref] [PubMed] [PMC]
- Najmi H, Mobarki Y, Mania K, Altowairqi B, Basehi M, Mahfouz MS, et al. The correlation between keratoconus and eye rubbing: a review. Int J Ophthalmol. 2019;12(11):1775-81. [Crossref] [PubMed] [PMC]
- Hashemi H, Heydarian S, Hooshmand E, Saatchi M, Yekta A, Aghamirsalim M, et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea. 2020;39(2):263-70. [Crossref] [PubMed]
- Jia Y, Bailey ST, Hwang TS, McClintic SM, Gao SS, Pennesi ME, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395-402. [Crossref] [PubMed] [PMC]
- Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710-25. [Crossref] [PubMed] [PMC]
- Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1-55. [Crossref] [PubMed] [PMC]
- Pinheiro-Costa J, Correia PJ, Pinto JV, Alves H, Torrão L, Moreira R, et al. Increased choroidal thickness is not a disease progression marker in keratoconus. Sci Rep. 2020;10(1):19938. [Crossref] [PubMed] [PMC]
- Pinheiro-Costa J, Viana Pinto J, Perestrelo S, Beato JN, Torrão L, Brandão E, et al. Increased choroidal thickness in keratoconus patients: perspectives in the disease pathophysiology. J Ophthalmol. 2019;2019:2453931. [Crossref] [PubMed] [PMC]
- Bilgin B, Karadag AS. Choroidal thickness in keratoconus. Int Ophthalmol. 2020;40(1):135-40. [Crossref] [PubMed]
- Wintergerst MWM, Pfau M, Müller PL, Berger M, de Sisternes L, Holz FG, et al. Optical coherence tomography angiography in intermediate uveitis. Am J Ophthalmol. 2018;194:35-45. [Crossref] [PubMed]
- Çömez A, Beyoğlu A, Karaküçük Y. Quantitative analysis of retinal microcirculation in optical coherence tomography angiography in cases with Behçet's disease without ocular involvement. Int Ophthalmol. 2019;39(10):2213-21. [Crossref] [PubMed]
- Hashemi H, Heirani M, Ambrósio R Jr, Hafezi F, Naroo SA, Khorrami-Nejad M. The link between Keratoconus and posterior segment parameters: An updated, comprehensive review. Ocul Surf. 2022;23:116-22. [Crossref] [PubMed]
- Pierro L, Bianco L, Bertuzzi F, Arrigo A, Saladino A, Distefano A, et al. New findings in early-stage keratoconus: lamina cribrosa curvature, retinal nerve fiber layer thickness, and vascular perfusion. Am J Ophthalmol. 2023;246:122-9. [Crossref] [PubMed]
.: Process List