Objective: To assess polycythaemia vera (PV)-related retinal microvascular morphological changes using optical coherence tomography angiography (OCTA). Material and Methods: In this cross-sectional case-control study, 30 PV patients (Group 1) and 30 healthy individuals (Group 2) underwent a comprehensive ophthalmological examination, followed by OCTA acquisition in Angio Retina mode (6x6 mm). Macular superficial and deep vascular plexus vessel densities (VDs) in foveal, parafoveal, and perifoveal, as well as foveal avascular zone (FAZ) area, FAZ perimeter, and foveal VD in 300-µm wide region around FAZ (FD-300) were automatically analysed using AngioVue Analytics software. Sequential measurements were compared for statistical significance. Results: Mean ages were 46.97±3.20 and 47.42±2.55 years in Groups 1 and 2, respectively (p=0.350). Group 1 had significantly increased superficial foveal VD than Group 2 (p=0.032). Besides, Group 1 had non-significantly increased VDs than Group 2 in the following areas: superficial whole (p=0.468), superficial parafoveal (p=0.692), deep foveal (p=0.752), deep perifoveal (p=0.369), FAZ perimeter (p=0.209), and FD-300 (p=0.914). The FAZ area decreased non-significantly in Group 1 compared to Group 2 (p=0.529). Conclusion: PV appears to be associated with considerable retinal microvascular morphological changes, indicating a potential hyperviscosity impact on retinal VDs that would necessitate careful consideration during PV patient evaluation.
Keywords: Hyperviscosity syndrome; optical coherence tomography angiography; retinal microvasculature; polycythaemia vera; vessel density
Amaç: Bu çalışmanın amacı, polisitemia vera (PV) ile ilişkili retinal mikrovasküler morfolojik değişiklikleri optik koherens tomografi anjiyografi (OKTA) ile değerlendirmektir. Gereç ve Yöntemler: Bu kesitsel olgu-kontrol çalışmasında, 30 PV hastası (Grup 1) ve 30 sağlıklı bireye (Grup 2) kapsamlı bir oftalmolojik muayene yapıldıktan sonra Anjiyo Retina modunda (6x6 mm) OKTA alımı gerçekleştirildi. Foveal, parafoveal ve perifoveal maküler yüzeysel ve derin vasküler pleksus damar yoğunlukları ve foveal avasküler bölge alanı, foveal avasküler bölge çevresi ve foveal avasküler bölge etrafındaki 300 µm genişliğindeki bölgede foveal damar yoğunluğu (FD-300) AngioVue Analytics yazılımı ile otomatik olarak analiz edildi. Sıralı ölçümler istatistiksel anlamlılık için karşılaştırıldı. Bulgular: Grup 1 ve 2'de yaş ortalamaları sırasıyla 46,97±3,20 ve 47,42±2,55 idi (p=0,350). Grup 1'de yüzeysel foveal damar yoğunluğu, Grup 2'ye göre anlamlı derecede yüksekti (p=0,032). Ayrıca Grup 1'in şu alanlarda Grup 2'ye göre anlamlı olmayan şekilde yüksek damar yoğunlukları vardı: yüzeysel bütün (whole) (p=0,468), yüzeysel parafoveal (p=0,692), derin foveal (p=0,752), derin perifoveal (p=0,369), foveal avasküler bölge çevresi (p=0,209) ve FD-300 (p=0,914). Foveal avasküler bölge alanı Grup 1'de Grup 2'ye göre anlamlı olmayan şekilde azaldı (p=0,529). Sonuç: PV, önemli retinal mikrovasküler morfolojik değişikliklerle ilişkili görünmektedir. Bu bulgu, retinal damar yoğunlukları üzerinde PV hasta değerlendirmesi sırasında dikkatli bir şekilde düşünülmesini gerektirecek potansiyel bir hiperviskozite etkisine işaret etmektedir.
Anahtar Kelimeler: Hiperviskozite sendromu; optik koherens tomografi anjiyografi; retina mikrovaskülatür; polisitemia vera; damar yoğunluğu
- Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405. [Crossref] [PubMed]
- Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123-33. [Crossref] [PubMed] [PMC]
- Liisborg C, Hasselbalch HC, Sørensen TL. Ocular manifestations in patients with philadelphia-negative myeloproliferative neoplasms. Cancers (Basel). 2020;12(3):573. [Crossref] [PubMed] [PMC]
- Spivak JL, Silver RT. The revised World Health Organization diagnostic criteria for polycythemia vera, essential thrombocytosis, and primary myelofibrosis: an alternative proposal. Blood. 2008;112(2):231-9. [Crossref] [PubMed]
- Gunay M, Dogru M, Celik G, Gunay BO. Swept-source optical coherence tomography analysis in asthmatic children under inhaled corticosteroid therapy. Cutan Ocul Toxicol. 2019;38(2):131-5. [Crossref] [PubMed]
- Tefferi A, Pardanani A. Myeloproliferative neoplasms: a contemporary review. JAMA Oncol. 2015;1(1):97-105. [Crossref] [PubMed]
- Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92(1):94-108. [Crossref] [PubMed]
- Spivak JL. Myeloproliferative neoplasms. N Engl J Med. 2017;376(22):2168-81. [Crossref] [PubMed]
- Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1-55. [Crossref] [PubMed] [PMC]
- Massin P, Girach A, Erginay A, Gaudric A. Optical coherence tomography: a key to the future management of patients with diabetic macular oedema. Acta Ophthalmol Scand. 2006;84(4):466-74. [Crossref] [PubMed]
- Kim DY, Fingler J, Zawadzki RJ, Park SS, Morse LS, Schwartz DM, et al. Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci U S A. 2013;110(35):14354-9. [Crossref] [PubMed] [PMC]
- Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet. 1978;2(8102):1219-22. [Crossref] [PubMed]
- Pichi F, Sarraf D, Morara M, Mazumdar S, Neri P, Gupta V. Pearls and pitfalls of optical coherence tomography angiography in the multimodal evaluation of uveitis. J Ophthalmic Inflamm Infect. 2017;7(1):20. [Crossref] [PubMed] [PMC]
- Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY, et al. Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT130-40. [Crossref] [PubMed] [PMC]
- Kaizu Y, Nakao S, Yoshida S, Hayami T, Arima M, Yamaguchi M, et al. Optical coherence tomography angiography reveals spatial bias of macular capillary dropout in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(11):4889-97. [Crossref] [PubMed]
- Samara WA, Shahlaee A, Sridhar J, Khan MA, Ho AC, Hsu J. Quantitative optical coherence tomography angiography features and visual function in eyes with branch retinal vein occlusion. Am J Ophthalmol. 2016;166:76-83. [Crossref] [PubMed]
- Williamson TH, Rumley A, Lowe GD. Blood viscosity, coagulation, and activated protein C resistance in central retinal vein occlusion: a population controlled study. Br J Ophthalmol. 1996;80(3):203-8. [Crossref] [PubMed] [PMC]
- Sharma T, Grewal J, Gupta S, Murray PI. Ophthalmic manifestations of acute leukaemias: the ophthalmologist's role. Eye (Lond). 2004;18(7):663-72. [Crossref] [PubMed]
- Spivak JL. Polycythemia vera and myeloproliferative diseases. In: Braunwald E, Hauser SL, Fausi AS, Casper DL, eds. Harrison's Principles of Internal Medicine. 15th ed. New York: McGraw-Hill; 2001. p.702-4.
- Dhrami-Gavazi E, Lee W, Horowitz JD, Odel J, Mukkamala SK, Blumberg DM, et al. Jak2 mutation-positive polycythemia vera presenting as central retinal artery occlusion. Retin Cases Brief Rep. 2015;9(2):127-30. [Crossref] [PubMed]
- Menke MN, Feke GT, McMeel JW, Treon SP. Effect of plasmapheresis on hyperviscosity-related retinopathy and retinal hemodynamics in patients with Waldenstrom's macroglobulinemia. Invest Ophthalmol Vis Sci. 2008;49(3):1157-60. [Crossref] [PubMed]
- Crowe RJ, Kohner EM, Owen SJ, Robinson DM. The retinal vessels in congenital cyanotic heart disease. Med Biol Illus. 1969;19(2):95-9. [PubMed]
- Knight OJ, Girkin CA, Budenz DL, Durbin MK, Feuer WJ; Cirrus OCT Normative Database Study Group. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012;130(3):312-8. [Crossref] [PubMed] [PMC]
- Girkin CA, McGwin G Jr, Sinai MJ, Sekhar GC, Fingeret M, Wollstein G, et al. Variation in optic nerve and macular structure with age and race with spectral-domain optical coherence tomography. Ophthalmology. 2011;118(12):2403-8. [Crossref] [PubMed]
.: Process List