Göz anatomik olarak ön ve arka segmentlere ayrılmıştır. Kendine has anatomik, biyokimyasal, fizyolojik özellikleri nedeni ile yabancı moleküllere ve ilaç uygulamalarına karşı çok korunaklıdır. Göze ilaç taşınması kornea, konjonktiva gibi bariyerlerle sınırlandırılmaktadır. Göze uygulanan moleküllerde temel hedefler, bariyerleri etkin biçimde aşılır iken, ilaçların göz dokularında çözünürlüğünün artırılmasıdır. İlacın gözde kalış süresini uzatmak ve biyoyararlanımını artırmak amacıyla konvansiyonel dozaj formlarından farklı olarak oküler ilaç taşıyıcı sistemler geliştirilmiş; ayrıca punktum tıkacı sistemleri, iyontoforez ve gen terapisi gibi güncel yaklaşımlar üzerinde çalışmalar yapılmıştır. Lipozom, nanopartikül, nanoemülsiyon gibi steril kolloidal sistemler; oküler implant ve oküler insert gibi steril cisimler oküler ilaç taşıyıcı sistemler arasında yer almaktadır. Özellikle diyabetik makuler ödem, glokom, üveit gibi göz rahatsızlıklarının tedavisinde kendilerine özgü avantajları nedeni ile bu ilaç taşıyıcı sistemler ön plana çıkmaktadır. İlaç uygulamalarında başarıyı etkileyen en önemli faktörlerden birkaçı; ilaç yükleme kapasitesi, ilaç salım hızı ve kullanılan polimerin biyouyumluluğudur. Göze ilaç taşınmasında kullanılan sistemlerin başarısında en önemli faktörlerden biri polimer seçimidir. Günümüzde polimetilmetakrilat, polialkilsiyanoakrilat, polikaprolakton, albumin, jelatin, polilaktik asit, kitosan ve Eudgarid gibi pek çok sentetik ve doğal biyouyumlu polimer göze ilaç taşınmasında kullanılmaktadır. Bu çalışmada; özellikle son yıllarda oküler ilaç taşıyıcı sistemlerle ilgili yapılan araştırmalar üzerinde durularak, bu sistemlerin sınıflandırılması ve henüz sınıflandırma dışı olan daha güncel yaklaşımların verilmesi amaçlanmıştır.
Anahtar Kelimeler: Oküler ilaç taşıyıcı sistemler; kolloidal oküler sistemler; punktum tıkaçları; gen terapisi; iyontoforez
The eye is anatomically divided into the anterior and posterior segments. Due to its unique anatomical, biochemical and physiological properties, it is very protected against foreign molecules and drug applications. Drug transport to the eye is limited to barriers such as cornea, conjunctiva. The main objectives of the molecules applied to the eye are to increase the solubility of the drugs in the eye tissues while both barriers are effectively overcome. Different from conventional dosage forms, ocular drug delivery systems have been developed in order to increase the bioavailability of the drug and extend the time of the drug; in addition, current approaches such as punctal plugs, iontophoresis and gene therapy have been studied. Sterile colloidal systems such as liposomes, nanoparticles, nanoemulsions; ocular implant and ocular insert are among the ocular drug delivery systems. These drug delivery systems come to the forefront especially in the treatment of eye disorders such as diabetic macular edema, glaucoma and uveitis. Some of the most important factors affecting success in drug applications are; drug loading capacity, drug release rate and biocompatibility of the polymer used. One of the most important factors in the success of the systems used in drug transport to the eye is the choice of polymer. Nowadays, many synthetic and natural biocompatible polymers such as polymethylmethacrylate, polyalkylcyanacrylate, polycaprolactone, albumin, gelatin, polylactic acid, chitosan and Eudgarid have been used for drug delivery to the eye. In this study, it is aimed to classify ocular drug delivery systems by focusing on the research related to these systems especially in recent years and to give more current approaches that are not yet classified.
Keywords: Ocular drug delivery systems; colloidal ocular systems; punctal plugs; gene therapy iontophoresis
- Reimondez-Troitiño S, Csaba N, Alonso MJ, de La Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm. 2015;95(Pt B):279-93. [Crossref] [PubMed]
- Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond). 2017;12(6):683-702. [Crossref] [PubMed]
- Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281-91. [Crossref] [PubMed] [PMC]
- Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2(2):47-64. [Crossref] [PubMed] [PMC]
- Gürsoy A. [Ocular systems]. Kontrollü Salım Sistemleri. No: 1. 1. Baskı. İstanbul: Kontrollü Salım Sistemleri Derneği Yayını; 2002. p.198209.
- Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57(11):1595-639. [Crossref] [PubMed]
- Zhang X, Vimalin Jeyalatha M, Qu X, He X, Ou S, Bu J, et al. Dry eye management: targeting the ocular surface microenvironment. Int J Mol Sci. 2017;18(7):1398. [Crossref] [PubMed] [PMC]
- Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3): 348-60. [Crossref] [PubMed] [PMC]
- Ananthula HK, Vaishya RD, Barot M, Mitra AK. Bioavailability. In: Tasman W, Jaeger EA, eds. Duane?s Ophthalmology. 1 st ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p.50-75.
- Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocul Pharmacol Ther. 2013; 29(2):106-23. [Crossref] [PubMed] [PMC]
- Huang HS, Schoenwald RD, Lach JL. Corneal penetration behavior of beta-blocking agents III: in vitro-in vivo correlation. J Pharm Sci. 1983;72(11):1279-81. [Crossref] [PubMed]
- Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014; 5(12):1297-315. [Crossref] [PubMed]
- Yavuz B, Kompella UB. Ocular drug delivery. In: Whitcup SM, Azar DT, eds. Pharmacologic Therapy of Ocular Disease. 1 st ed. Gewerbestrasse 11: Springer, Cham; 2016. p.57-93. [Crossref] [PubMed]
- Chen H. Recent developments in ocular drug delivery. J Drug Target. 2015;23(7-8):597-604. [Crossref] [PubMed]
- Robinson JR, Mlynek GM. Bioadhesive and phase-change polymers for ocular drug delivery. Adv Drug Deliv Rev. 1995;16(1):45-50. [Crossref]
- Başaran E, Yazan Y. Ocular application of chitosan. Expert Opin Drug Deliv. 2012;9(6):701-12. [Crossref] [PubMed]
- Dureja H, Tiwary AK, Gupta S. Simulation of skin permeability in chitosan membranes. Int J Pharm. 2001;213(1-2):193-8. [Crossref]
- Singla AK, Chawla M. Chitosan: some pharmaceutical and biological aspects--an update. J Pharm Pharmacol. 2001;53(8):1047-67. [Crossref]
- Al-Kinani AA, Zidan G, Elsaid N, Seyfoddin A, Alani AWG, Alany RG. Ophthalmic gels: past, present and future. Adv Drug Deliv Rev. 2018;126:113-26. [Crossref] [PubMed]
- Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2):165-96. [Crossref]
- Tan G, Yu S, Pan H, Li J, Liu D, Yuan K, et al. Bioadhesive chitosan-loaded liposomes: a more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol. 2017;94(Pt A):355-63. [Crossref] [PubMed]
- Silva MM, Calado R, Marto J, Bettencourt A, Almeida AJ, Gonçalves LMD. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar Drugs. 2017;15(12):370. [Crossref] [PubMed] [PMC]
- Chaurasia SS, Lim RR, Lakshminarayanan R, Mohan RR. Nanomedicine approaches for corneal diseases. J Funct Biomater. 2015; 6(2):277-98. [Crossref] [PubMed] [PMC]
- Lallemand F, Daull P, Benita S, Buggage R, Garrigue JS. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J Drug Deliv. 2012;2012:604204. [Crossref] [PubMed] [PMC]
- Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10 (3):808-19. [Crossref] [PubMed] [PMC]
- Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv. 2006; 3(2):207-17. [Crossref] [PubMed]
- Vadlapudi AD, Cholkar K, Dasari SR, Mitra AK. Ocular drug delivery. In: Mitra AK, Kwatra D, Vadlapudi AD, eds. Drug Delivery. 1st ed. Burlington MA: Jones & Bartlett Learning; 2015. p.219-63.
- Lavik E, Kuehn MH, Kwon YH. Novel drug delivery systems for glaucoma. Eye (Lond). 2011;25(5):578-86. [Crossref] [PubMed] [PMC]
- Kuno N, Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging. 2010;27(2):117-34. [Crossref] [PubMed]
- Wang J, Jiang A, Joshi M, Christoforidis J. Drug delivery implants in the treatment of vitreous in flammation. Mediators Inflamm. 2013;2013: 780634. [Crossref] [PubMed] [PMC]
- Ervin AM, Wojciechowski R, Schein O. Punctal occlusion for dry eye syndrome. Cochrane Data base Syst Rev. 2010;(9):CD006775. [Crossref]
- Freeman JM. The punctum plug: evaluation of a new treatment for the dry eye. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1975;79(6):OP874-9.
- Baxter SA, Laibson PR. Punctal plugs in the management of dry eyes. Ocul Surf. 2004; 2(4):255-65. [Crossref]
- Doğru İ, Toklu Y, Saraç Ö, Çakmak HB. [Long term results of punctal plug applied dry eye patients]. Turkish Journal of Ophthalmology. 2011;41(4):225-9. [Crossref]
- Bayar SA, Akova YA. [Current treatment meth ods of dry eye syndrome]. J Exp Clin Med. 2012;29(2):58-65.
- Altan-Yaycioglu R, Gencoglu EA, Akova YA, Dursun D, Cengiz F, Akman A. Silicone versus collagen plugs for treating dry eye: results of a prospective randomized trial including lacrimal scintigraphy. Am J Ophthalmol. 2005;140(1):88-93. [Crossref] [PubMed]
- Arıtürk N, Öge İ, Erkan D, Süllü Y, Şahin M. [The effects of nasolacrimal canal blokage on topical medications for glaucoma]. Turkiye Klinikleri J Ophthalmol. 1995;4(4): 292-5.
- Gooch N, Molokhia SA, Condie R, Burr RM, Archer B, Ambati BK, et al. Ocular drug delivery for glaucoma management. Pharmaceutics. 2012;4(1):197-211. [Crossref] [PubMed] [PMC]
- Gürdal C. [Interventional therapies in dry eye]. MN Oftalmoloji. 2016;23(Suppl 1):25-31.
- Madni A, Rahem MA, Tahir N, Sarfraz M, Jabar A, Rehman M, et al. Non-invasive strategies for targeting the posterior segment of eye. Int J Pharm. 2017;530(1-2):326-45. [Crossref] [PubMed]
- Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery fo r posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005; 57(14):2063-79. [Crossref] [PubMed]
- Eljarrat-Binstock E, Domb AJ. Iontophoresis: a non-invasive ocular drug delivery. J Control Release. 2006;110(3):479-89. [Crossref] [PubMed]
- Solinís MÁ, del Pozo-Rodríguez A, Apaolaza PS, Rodríguez-Gascón A. Treatment of ocular disorders by gene therapy. Eur J Pharm Biopharm. 2015;95(Pt B):331-42. [Crossref] [PubMed]
- Wan C, Li F, Li H. Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep. 2015; 12(4):4803-14. [Crossref] [PubMed] [PMC]
- Contreras-Ruiz L, de la Fuente M, Párraga JE, López-García A, Fernández I, Seijo B, et al. In tracellular trafficking of hyaluronic acid-chitosan oligomer-based nanoparticles in cultured human ocular surface cells. Mol Vis. 2011;17:279-90.
.: Process List