Amaç: Glokomda nöral ve korneal parametrelere ilave olarak bazı vasküler parametreler de etkilenir. Bu çalışmanın amacı, oküler hipertansiyonlu gözlerde vasküler yapıları ölçmek ve kıyaslamaktır. Gereç ve Yöntemler: Bir ya da 2 gözünde göz içi basıncı 21 mmHg'dan yüksek olan 19 hasta çalışmaya dâhil edildi. Hastalarda glokomatöz optik nöropati veya görme alanı kaybı bulunmuyordu. Hastaların 2 gözü ve kontrol kişilerin rastgele seçilen 1 gözünde yüzeysel ve derin foveal avasküler zon alanları, foveal ve parafoveal damar yoğunlukları ve koroid kalınlığı swept-source optikal koherens tomografi kullanılarak ölçüldü. Bulgular: Vasküler parametreler arasında, hastaların göz içi basıncı daha yüksek olan baskın gözlerinin derin foveal avasküler zon alanları kontrol grubu ile kıyaslandığında nispeten daha küçük olsa da bu farklılık istatistiksel olarak anlamlı değildi. Derin foveal avasküler zon alanı hastaların baskın olan gözlerinde 302,32±113,95 μm2, baskın olmayan diğer gözlerinde 317,16±109,89 μm2 olarak ölçülürken, bu parametre kontrol grubunu oluşturan kişilerde 414,33±215,72 μm2 idi. Bu parametre açısından baskın gözlerle kontrol gözleri ve baskın olmayan diğer gözlerle kontrol gözleri arasındaki istatistiksel fark sırasıyla p=0,065 ve p=0,10 düzeyinde idi. Yüzeysel foveal avasküler zon alanı, maküler damar yoğunluğu ve koroid kalınlığı gibi diğer vasküler parametreler de gruplar arasında farklı değildi. Sonuç: Bu çalışma, oküler hipertansiyonun makulada yüzeysel ve derin foveal avasküler zon alanlarını etkilemediğini göstermiştir.
Anahtar Kelimeler: Oküler hipertansiyon; foveal avasküler zon; damar yoğunluğu; koroid kalınlığı
Objective: Certain vascular parameters are affected in glaucoma in addition to neural and corneal parameters. The aim of this study was to measure and compare vascular parameters in eyes with ocular hypertension. Material and Methods: Nineteen patients with intraocular pressure higher than 21 mmHg in one or both eyes were included in the study. Patients did not have glaucomatous optic neuropathy or visual field defect. Superficial and deep foveal avascular zone areas, foveal and parafoveal vessel densities and choroidal thickness in both eyes of patients and in a randomly selected eye of controls were measured by the swept-source optical coherence tomography. Results: Among the vascular parameters, although deep foveal avascular zone area of dominant eye with higher intraocular pressure of patients was relatively smaller compared to control group, this difference was not statistically significant. The deep foveal avascular zone area was 302.32±113.95 μm2 in dominant eyes of patients and 317.16±109.89 μm2 in non-dominant fellow eyes, while this parameter was 414.33±215.72 μm2 in the control group. The statistical difference between dominant eyes and control eyes and non-dominant fellow eyes and control eyes in terms of this parameter was p=0.065 and p=0.10, respectively. Other vascular parameters such as superficial foveal avascular zone area, macular vessel density and choroidal thickness did not differ between the groups. Conclusion: This study showed that ocular hypertension did not affect superficial and deep foveal avascular zone areas in macula.
Keywords: Ocular hypertension; foveal avascular zone; vessel density; choroidal thickness
- Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-11. [Crossref] [PubMed] [PMC]
- Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711-20. [Crossref]
- Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. Linking structure and function in glaucoma. Prog Retin Eye Res. 2010;29(4):249-71. [Crossref] [PubMed] [PMC]
- Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology. 2008;115(8):1340-6. [Crossref] [PubMed] [PMC]
- Leung CK, Lam S, Weinreb RN, Liu S, Ye C, Liu L, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117(9):1684-91. [Crossref] [PubMed]
- Garas A, Vargha P, Holló G. Diagnostic accuracy of nerve fiber layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomography to detect glaucoma]. Eye (Lond). 2011;25(1):57-65. [Crossref] [PubMed] [PMC]
- Chen CL, Zhang A, Bojikian KD, Wen JC, Xhang Q, Xin C, et al. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT475-85. [Crossref] [PubMed] [PMC]
- Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, et al. Deep retinal layer microvasculature dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016;123(12):2509-18. [Crossref] [PubMed] [PMC]
- Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Vis Sci. 2017;58(9):3637-45. [Crossref] [PubMed]
- Dimitrova G, Chihara E, Takahashi H, Amano H, Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(1):190-6. [Crossref] [PubMed]
- Chihara E, Dimitrova G, Amano H, Chihara T. Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Ophthalmol Vis Sci. 2017;58(1):690-7. [Crossref] [PubMed]
- Akagi T, Iida Y, Nakanishi H, Terada N, Morooka S, Yamada H, et al. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study. Am J Ophthalmol. 2016;168:237-49. [Crossref] [PubMed]
- Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, et al. Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology. 2017;124(5):709-19. [Crossref] [PubMed] [PMC]
- Coscas F, Sellam A, Glacet-Bernard A, Jung J, Goudot M, Miere A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT211-23. [Crossref] [PubMed]
- Fujiwara A, Morizane Y, Hosokawa M, Kimura S, Shiode Y, Hirano M, et al. Factors affecting foveal avascular zone in healthy eyes: an examination using swept source optical coherence tomography angiography. PLoS One. 2017;12(11):e0188572. [Crossref] [PubMed] [PMC]
- Sampson DM, Gong P, An D, Menghini M, Hansen A, Mackey DA, et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(7):3065-72. [Crossref] [PubMed]
- Liu L, Jia Y, Takusagawa HL, Pechauer AD, Edmunds B, Lombardi L, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133(9):1045-52. [Crossref] [PubMed] [PMC]
- Lisboa R, Paranhos A Jr, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA. Comparison different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthalmol Vis Sci. 2013;54(5):3417-25. [Crossref] [PubMed] [PMC]
- Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect and glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT451-9. [Crossref] [PubMed] [PMC]
- Gordon MO, Torri V, Miglior S, Beiser JA, Floriani I, Miller JP, et al; Ocular Hypertension Treatment Study Group, European Glaucoma Prevention Study Group. Validated prediction model for development of primary open-angle glaucoma in individuals with ocular hypertension. Ophthalmology. 2007;114(1):10-9. [Crossref] [PubMed] [PMC]
- Medeiros FA, Weinreb RN, Zangwill LM, Alencar LM, Sample PA, Vasile C, et al. Long-term intraocular presure fluctuations and risk of conversion from ocular hypertension to glaucoma. Ophthalmology. 2008;115(6):934-40. [Crossref] [PubMed] [PMC]
- Kwon J, Choi J, Shin JW, Lee J, Kook MS. Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest Ophthalmol Vis Sci. 2017;58(3):1637-45. [Crossref] [PubMed]
- Chao SC, Yang SJ, Chen HC, Sun CC, Liu CH, Lee CY. Early macular angiography among patients with glaucoma, ocular hypertension and normal subjects. J Ophthalmol. 2019;2019:7419470. [Crossref] [PubMed] [PMC]
.: Process List