Objective: Obese and overweight adults have low levels of adherence to the sports activities compared to their normal-weight counterparts. As obese individuals having greater body weight and change in walking biomechanics compared to normal gait pattern may lead increased walking energy expenditure. In this study, we have aimed to explain increased energy expenditure of obese subjects in terms of possible differences in gait variables comparing with normal-weights. Material and Methods: There were 2 groups as normal-weight and obese subjects, each including 14 healthy male participants. The energy expenditure of participants was measured via indirect calorimetry in resting and walking in 3 walking speeds conditions as preferred walking speed (PWS), <30% slower than PWS and >30% higher than PWS. The spatiotemporal variables and displacement of center of body mass (COM) were recorded simultaneously with walking energy expenditure measurement. Results: The resting oxygen consumption (VO2) was significantly higher in obese subjects (p<0.001). The significance was disappeared when resting VO2 normalized to fat-free mass of subjects (p=0.951). VO2 was significantly different between 2 groups in all walking conditions (p=0.002, p=0.001, p=0.039, respectively). The step width of obese participants was significantly higher in all walking conditions (p=0.001, p<0.000, p=0.000, respectively). COM mediolateral displacement was significantly higher in obese subjects in all walking speeds (p<0.000, p<0.000, p<0.000, respectively). However, vertical displacement of COM did not change significantly between 2 groups (p=0.820, p=0.301, p=0.219, respectively). While mediolateral displacement of COM was decreased, vertical displacement was increased significantly with each speed increment. Conclusion: The lateral balance is affected more in obese individuals; they prefer to walk in wider step width to keep mediolateral movement of COM in lateral limits; in turn use more energy compared to normal-weights.
Keywords: COM; gait analysis; indirect calorimetry; spatiotemporal gait variables; obesity
Amaç: Obez ve/veya fazla kilolu yetişkinler, normal kilodaki yaşıtlarına göre spor aktivitelerine düşük düzeyde bağlılığa sahiptirler. Obez bireylerin daha fazla vücut ağırlığına sahip olması ve yürüme biyomekaniklerinde normal yürüme modeline kıyasla olan değişimlere bağlı olarak artmış yürüme enerji tüketimine neden olabilir. Bu çalışmada, obez katılımcıların artmış enerji tüketimlerini, yürüme parametrelerinde normal kilodakilere oranla labilecek değişiklikler karşılaştırılarak açıklamayı hedeflemekteyiz. Gereç ve Yöntemler: Normal-kilolu ve obez katılımcılar olmak üzere 2 grup vardı, her grupta 14 sağlıklı erkek katılımcı yer almaktaydı. Katılımcıların enerji tüketimi, dinlenme ve 3 yürüme hızı; Tercih Edilen Yürüme Hızı (TEYH), TEYH'den <%30 daha yavaş, TEYH'den >%30 daha hızlı koşullarında olmak üzere indirekt kalorimetre ile ölçüldü. Spasyal ve temporal parametreler ve vücut kütle merkezi (VKM)'nin yer değişimi, yürüme enerji tüketimi ölçümü ile eş zamanlı kaydedildi. Bulgular: Dinlenme sırasında oksijen tüketimi (VO2) obez katılımcılarda fark edilir derecede yüksek bulundu (p<0,000). Bu fark, dinlenme sırasında tüketilen VO2 katılımcıların yağsız vücut kütlesi ile normalize edildiğinde ortadan kalktı (p=0,951). Tüm yürüme koşullarında, VO2 2 grup arasında belirgin derecede farklı bulundu (sırasıyla p=0,002, p=0,001, p=0,039). Obez katılımcıların adım genişliği, tüm yürüme koşullarında daha fazla bulundu (sırasıyla p=0,001, p<0,000, p=0,000). VKM'nin yatay düzlemde yer değişimi, obez katılımcılarda tüm yürüme koşullarında belirgin derecede daha yüksek bulundu (sırasıyla p<0,000, p<0,000, p<0,000). Ancak, VKM'nin düşey düzlemde yer değişimi 2 grup arasında fark edilir derecede değişmedi (sırasıyla p=0,820, p=0,301, p=0,219). Her yürüme hızı artışı ile birlikte, VKM'nin yatay düzlemde yer değişimi azalırken, düşey düzlemde yer değişimi belirgin derecede arttı. Sonuç: Obez bireylerde yatay düzlemde denge daha çok etkilenir, VKM'nin yatay düzlemdeki hareketini yatayda ulaşılabilecek maksimum sınırlar içerisinde tutmak için daha geniş adım genişliğinde yürümeyi tercih ederler, sonuç olarak da normal kilolulara göre daha çok enerji kullanırlar.
Anahtar Kelimeler: VKM; yürüme analizi; indirekt kalorimetre; spasyal ve temporal yürüme değişkenleri; obezite
- World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:16-20.
- World Health Organization (WHO). Obesity and overweight. WHO Web site. (cited 2017 November 07); Available from: http://www.who.int/en/.
- Dyck DV, Cerin E, Bourdeaudhuij ID, Hinckson E, Reis RS, Davey R, et al. International study of objectively measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int J Obes (Lond). 2015;39(2):199-207. [Crossref] [PubMed] [PMC]
- Marques A, Ekelund U, Sardinha LB. Associations between organized sports participation and objectively measured physical activity, sedentary time and weight status in youth. J Sci Med Sport. 2016;19(2):154-7. [Crossref] [PubMed] [PMC]
- Xie Y, Stewart SM, Lam TH, Viswanath K, Chan SS. Television viewing time in Hong Kong adult population: associations with body mass index and obesity. PLoS One. 2014;10;9(1):e85440. [Crossref] [PubMed] [PMC]
- Yang X, Telema R, Viikari J, Raitakari OT. Risk of obesity in relation to physical activity tracking from youth to adulthood. Med Sci Sports Exerc. 2006;38(5):919-25. [Crossref] [PubMed]
- Ekkekakis P, Vazou S, Bixby WR, Georgiadis E. The mysterious case of the public health guideline that is (almost) entirely ignored: Call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes Rev. 2016;17(4):313-29. [Crossref] [PubMed]
- Donelan JM, Shipman DW, Kram R, Kuo AD. Mechanical and metabolic requirements for active lateral stabilization in human walking. J Biomech. 2004;37(6):827-35. [Crossref] [PubMed]
- Browning RC, Kram R. Effects of obesity on the biomechanics of walking at different speeds. Med Sci Sports Exerc. 2007;39(9):1632-41. [Crossref] [PubMed]
- Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31(3):366-9. [Crossref] [PubMed]
- Donelan JM, Kram R, Kuo AD. Mechanical and metabolic determinants of the preferred step width in human walking. Proc Biol Sci. 2001;268(1480):1985-92. [Crossref] [PubMed] [PMC]
- Ekelund U, Åman J, Yngve A, Renman C, Westerterp K, Sjöström M. Physical activity but not energy expenditure is reduced in obese adolescents: a case-control study. Am J Clin Nutr. 2002;76(5):935-41. [Crossref] [PubMed]
- Carneiro IP, Elliot SA, Siervo M, Padwal R, Bertoli S, Battezzati A. Is obesity associated with altered energy expenditure. Adv Nutr. 2016;16;7(3):476-87. [Crossref] [PubMed] [PMC]
- Ko S, Stenholm S, Ferrucci L. Characteristic gait patterns in older adults with obesity--results from the Baltimore longitudinal study of aging. J Biomech. 2010;19;43(6):1104-10. [Crossref] [PubMed] [PMC]
- Lai PP, Leung AK, Li AN, Zhang M. Three-dimensional gait analysis of obese adults. Clin Biomech (Bristol, Avon). 2008;23(1):2-S6. [Crossref] [PubMed]
- Runhaar J, Koes BW, Clockaerts S, Bierma-Zeinstra SMA. A systematic review on changed biomechanics of lower extremities in obese individuals: a possible role in the development of osteoarthritis. Obes Rev. 2011;12(12):1071-82. [Crossref] [PubMed]
- Sheehan KJ, Gormley J. The influence of excess body mass on adult gait. Clin Biomech (Bristol,Avon). 2013;28(3):337-343. [Crossref] [PubMed]
- Van de Putte M, Hagemeister N, St-Onge N, Parent G, Guise JA. Habituation to treadmill walking. Biomed Mater Eng. 2006;16(1):43-52. [PubMed]
- Compher C, Frankenfield D, Keim N, Roth-Yousey L. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review. J Am Diet Assoc. 2006;106(6):881-903. [Crossref] [PubMed]
- Ravussin E, Lillioja S, Knowler WC, Christin L, Freymond D, Abbott WG, et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med. 1988;25;318(8):467-72. [Crossref] [PubMed]
- LeCheminant JD, Heden T, Smith J, Covington NK. Comparison of energy expenditure, economy, and pedometer counts between normal weight and overweight or obese women during a walking and jogging activity. Eur J Appl Physiol. 2009;106(5):675-82. [Crossref] [PubMed]
- Verga S, Buscemi S, Caimi G. Resting energy expenditure and body composition in morbidly obese, obese and control subjects. Acta Diabetol. 1994;31(1):47-51. [Crossref] [PubMed]
- Heymsfield SB, Gallagher D, Kotler DP, Wang Z, Allison DB, Heshka S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am J Physiol Endocrinol Metab. 2002;282(1):E132-8. [Crossref] [PubMed]
- Dal U, Erdogan AT, Cureoglu A, Beydagi H. Resting energy expenditure in normal-weight and overweight/obese subjects was similar despite elevated sympathovagal balance. Obes Facts. 2012;5(5):776-83. [Crossref] [PubMed]
- Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU. The role of free-living daily walking in human weight gain and obesity. Diabetes. 2008;57(3):548-54. [Crossref] [PubMed]
- Browning RC, Kram R. Energetic cost and preferred speed of walking in obese vs. normal weight women. Obes Res. 2005;13(5) 891-9. [Crossref] [PubMed]
- Pellegrini B, Peyré-Tartaruga LA, Zoppirolli C, Bortolon L, Savoldelli A, Minetti AE, et al. Mechanical energy patterns in nordic walking: comparisons with conventional walking. Gait Posture. 2017;51:234-238. [Crossref] [PubMed]
- Traballesi M, Porcacchia P, Averna T, Brunelli S. Energy cost of walking measurements in subjects with lower limb amputations: a comparison study between floor and treadmill test. Gait Posture. 2008;27(1):70-5. [Crossref] [PubMed]
- Peyrot N, Thievel D, Isacco L, Morin JB, Duche P, Belli A. Do mechanical gait parameters explain the higher metabolic cost of walking in obese adolescents?. J Appl Physiol(1985). 2009;106(6):1763-70. [Crossref] [PubMed]
- Malatesta D, Vismara L, Menegoni F, Galli M, Romei M, Capodaglio P. Mechanical external work and recovery at preferred walking speed in obese subjects. Medicine and Science Sports and Exercise. 2009;41(2):426-434. [Crossref] [PubMed]
- Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel NJ. The effect of walking speed on center of mass displacement. J Rehabil Res Dev. 2004;41(6A):829-34. [Crossref] [PubMed]
- Saunders JBD, Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35-A(3):543-58. [Crossref] [PubMed]
- Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22(6):597-610. [Crossref] [PubMed]
.: Process List