Amaç: Baş-boyun bölgesindeki kritik organ ve dokuların fazla sayıda olması nedeniyle reçete edilen tedavi dozlarının hastaya planlamada öngörülen yerlerinde ve hesaplanan dozda uygulanması hayati bir öneme sahiptir. Bu çalışmada, nazofarinks kanseri tanısı ile küratif radyoterapi uygulanmış 15 hastanın tedavi planları retrospektif olarak değerlendirilmiştir. Pencil Beam Konvolüsyon (PBC) ve Anizotropik Analitik Algoritması (AAA) kullanılarak yapılan 2 farklı planlamanın, normal doku dozları ve hedef hacmin almış olduğu dozlar açısından karşılaştırılması amaçlanmıştır. Gereç ve Yöntemler: Tedavi planlama sisteminde (TPS) aynı hasta için aynı dozimetrik parametreler girilerek, bu 2 ayrı doz hesaplama algoritması ile ikişer adet yoğunluk ayarlı radyoterapi [intensity-modulated radiation therapy (IMRT)] planı oluşturuldu ve elde edilen veriler, uygun istatistiksel yöntemler kullanılarak karşılaştırıldı. Bulgular: Doz-hacim histogramlarına bakıldığında, hedef hacmin hesaplanan dozimetrik değerleri açısından, AAA ile PBC arasında belirgin bir fark yoktu. Buna karşın monitör ünite sayıları arasındaki fark istatistiksel olarak anlamlı idi (p=0,001). Normal doku dozlarına bakıldığında ise spinal kord, optik sinirler, beyin sapı, parotisler ve larinks için dozimetrik veriler arasındaki farkların, istatistiksel olarak anlamlı olduğu görüldü (sırasıyla; p=0,023, p=0,001, p=0,027, p=0,001 ve p=0,001). Sonuç: Nazofarinks kanserinde olduğu gibi homojen olmayan dokuların ve hava boşluklarının bulunduğu tedavi bölgelerindeki IMRT planlamalarında, TPS'de hesaplanan normal doku doz değerleri AAA ve PBC algoritmaları arasında anlamlı farklılık göstermektedir.
Anahtar Kelimeler: Yoğunluk ayarlı radyoterapi; nazofarinks kanserleri; doz hesaplama algoritmaları; normal doku dozları
Objective: Due to the large number of critical organs and tissues in head and neck region, it is crucial to deliver the prescribed treatment doses accurately and precisely. In this study, 15 patients treated with curative radiotherapy for nasopharyngeal cancer were retrospectively assessed and compared in terms of normal tissue doses and planning target volume dose parameters, using Pencil Beam Convolution (PBC) and Anisotropic Analytical Algorithm (AAA) dose calculation algorithms. Material and Methods: For fifteen patient, two separate intensity-modulated radiation therapy (IMRT) plans were created by using these dose calculation algorithms, entering the same dosimetric parameters for the same patient at treatment planning system (TPS). The obtained data were analyzed using appropriate statistical methods. Results: When dose-volume histograms were evaluated, no significant differences were found between the AAA and PBC algorithms, in terms of calculated dosimetric values of the planning target volume. However, the difference between the calculated monitor unit values was found to be statistically significant (p=0.001). With regard to normal tissue doses, the differences between the data for spinal cord, optic nerves, brain stem, parotid and larynx were also statistically significant (p=0.023, p=0.001, p=0.027, p=0.001 and p=0.001, respectively). Conclusion: As a result, IMRT dose values calculated at TPS using AAA and PBC algorithms, differ in terms of normal tissue doses in the treatment regions that have inhomogeneous structures and air cavities, such as nasopharyngeal cancers.
Keywords: Intensity modulated radiation therapy; nasopharyngeal cancers; dose calculation algorithm; normal tissue doses
- Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. Epub 2018 Sep 12. Erratum in: CA Cancer J Clin. 2020;70(4):313. [Crossref] [PubMed]
- Lindberg R. Distribution of cervical lymph node metastases from squamous cell carcinoma of the upper respiratory and digestive tracts. Cancer. 1972;29(6):1446-9. [Crossref] [PubMed]
- Palta JR, Mackie TR. Intensity-Modulated Radiation Therapy: The State of the Art. Madison (WI): Medical Physics Publishing; 2003. Medical physics monograph, no. 29. [Link]
- Webb S. Intensity-Modulated Radiation Therapy. 1st ed. Bristol (UK): CRC Press; 2001. [Crossref]
- Jones AO, Das IJ. Comparison of inhomogeneity correction algorithms in small photon fields. Med Phys. 2005;32(3):766-76. [Crossref] [PubMed]
- Basran PS, Zavgorodni S, Berrang T, Olivotto IA, Beckham W. The impact of dose calculation algorithms on partial and whole breast radiation treatment plans. Radiat Oncol. 2010;5:120. [Crossref] [PubMed] [PMC]
- Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2006;8(1):33-46. [Crossref] [PubMed] [PMC]
- Özseven A, Özkan EE. Dosimetric evaluation of field-in-field and sliding-window IMRT in endometrium cancer patients with a new approach for the conformity index. Int J Radiat Res. 2020;18(4):853-9. [Crossref]
- Flejmer AM, Dohlmar F, Nilsson M, Stenmarker M, Dasu A. Analytical anisotropic algorithm versus pencil beam convolution for treatment planning of breast cancer: implications for target coverage and radiation burden of normal tissue. Anticancer Res. 2015;35(5): 2841-8. [PubMed]
- Bragg CM, Wingate K, Conway J. Clinical implications of the anisotropic analytical algorithm for IMRT treatment planning and verification. Radiother Oncol. 2008;86(2):276-84. [Crossref] [PubMed]
- Herman TD, Hibbitts K, Herman T, Ahmad S. Evaluation of pencil beam convolution and anisotropic analytical algorithms in stereotactic lung irradiation. Journal of Medical Physics. 2011;36(4):234-8. [Crossref] [PubMed] [PMC]
- Ulmer W, Harder D. A triple gaussian pencil beam model for photon beam treatment planning. Z Med Phys. 1995;5(1):25-30. [Crossref]
- Chaikh A, Balosso J. Statistic and dosimetric criteria to assess the shift of the prescribed dose for lung radiotherapy plans when integrating point kernel models in medical physics: are we ready? Transl Lung Cancer Res. 2016;5(6):681-7. [Crossref] [PubMed] [PMC]
- Kan MW, Cheung JY, Leung LH, Lau BM, Yu PK. The accuracy of dose calculations by anisotropic analytical algorithms for stereotactic radiotherapy in nasopharyngeal carcinoma. Phys Med Biol. 2011;56(2):397-413. [Crossref] [PubMed]
- Oinam AS, Singh L. Verification of IMRT dose calculations using AAA and PBC algorithms in dose buildup regions. J Appl Clin Med Phys. 2010;11(4):3351. [Crossref] [PubMed] [PMC]
- Bufacchi A, Nardiello B, Capparella R, Begnozzi L. Clinical implications in the use of the PBC algorithm versus the AAA by comparison of different NTCP models/parameters. Radiat Oncol. 2013;8(1):164. [Crossref] [PubMed] [PMC]
- Fogliata A, Nicolini G, Vanetti E, Clivio A, Cozzi L. Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water. Phys Med Biol. 2006;51(6):1421-38. [Crossref] [PubMed]
- Thomas SJ. A modified power-law formula for inhomogeneity corrections in beams of high-energy x rays. Med Phys. 1991;18(4):719-23. [Crossref] [PubMed]
- Lee N, Harris J, Garden AS, Straube W, Glisson B, Xia P, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. J Clin Oncol. 2009;27(22):3684-90. [Crossref] [PubMed] [PMC]
- The International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon beam IMRT. ICRU Report 83. J ICRU. 2010;10(10):1-106. [Crossref]
.: Process List