Amaç: Elde edilen mikro/nanopartiküllerin canlı vücudunda kullanılabilir olabilmesi için fiziksel ve kimyasal özelliklerinin iyi bilinmesi ve hücreler ile allerjik, toksik, karsinojenik reaksiyon vermemesi istenir. Bu nedenle, hazırlanan p(inülin) partiküllerinin karakterizasyonları yapıldıktan sonra potansiyel biyomedikal uygulamalar için ilaç taşıma sistemleri olarak kullanımları ve kan uyumlulukları araştırılmıştır. Gereç ve Yöntemler: Poli(inülin) (p(inülin)) mikro/nanojelleri ters misel mikroemülsiyon tekniği ile sentezlenmiştir. Hazırlanan p(inülin) partikülleri küresel morfolojide olup boyutları yüzlerce nanometreden onlarca mikrometre arasında değişen polidispers boyut dağılımına sahip olduğu belirlenmiştir. P(inülin) partiküllerinin boyutları optik mikroskop ve taramalı elektron mikroskop (SEM) ile tayin edilmiştir. Bulgular: Hazırlanan p(inülin) mikro/nanojellerini katyonik bir modifiye ajan olan 2-bromoetilamin (BEA) ile modifiye edilerek ilaç taşıma sistemleri olarak kullanım potansiyelleri incelenmiştir. Kimyasal modifikasyon ile p(inülin) mikro/nanojellerinin model ilaç olarak seçilen rosmarinik asidi (RA) 12 saate kadar fosfat tampon çözeltisinde pH 7,4 de ve 37°C'de sıcaklığında lineer bir salım kinetiği ile salabileceği gösterilmiştir. Sonuç: p(inülin) mikro/nanojellerinin hemoliz ve kan pıhtılaşma testlerine göre kan için uyumlu olduğu fakat modifiye p(inülin) mikro/nanojellerinin konsantrasyona bağlı olarak toksik etkiler oluşturabildiği gösterilmiştir.
Anahtar Kelimeler: Nanojeller; ilaç salımı; kan uyumluğu; materyal test etme
Objective: For the use of these obtained micro/nanoparticles in living bodies, physical and chemical properties should be well-known and cells should not cause allergic, toxic or carcinogenic reactions. As a result, after characterization of the prepared p(inulin) particles, their use as drugcarrying system for biomedical applications and blood compatibilities were researched. Material and Methods: Poly(inulin) micro/nanogels were synthesized via reverse micelle microemulsion technique. The prepared p(inulin) particles are determined in spherical morphology with variance dimensions ranging from hundreds of nanometers to tens of micrometers with polydisperse size distribution. The sizes of p(inulin) particles are assessed by optic microscope and scanning electron microscope (SEM). Results:The prepared p(inulin) micro/nanogels are modified with a cationic molecule, 2-bromoethylamine (BEA) and their potential for drug carrier/delivery applications are investigated. It is demonstrated that the p(inulin) micro/nanogels with chemical modification can release Rosmarinic Acid (RA), chosen as a model drug, up to12 h in linear release profile in phosphate saline buffer (PBS) at pH 7.4 and at 37°C. Conclusion: p(inulin) micro/nanogels are shown to be more blood compatible from hemolysis and blood clotting tests, but the modified p(inulin) micro/nanogels are found to have toxic effects depending on the concentration.
Keywords: Nanogel; drug liberation; blood safety; material testing
- Ding A, Yang L, Fan S, Lou X. Reversible methane storage in porous hydrogel supported clathrates. Chem Eng Sci. 2013;96: 124-30. [Crossref]
- Gilsa PS, Rayb D, Sahoo PK. Characteristics of xanthan gum-based biodegradable superporous hydrogel. Int J Biol Macromol. 2009;45(4):364-71. [Crossref] [PubMed]
- Sun D, Zhou J. Effect of water content on microstructures and oxygen permeation in PSiMA-IPN-PMPC hydrogel: a molecular simulation study. Chem Eng Sci. 2012;78:236-45. [Crossref]
- Zhi D, Huang Y, Han X, Liu H, Hu Y. A molecular thermodynamic model for temperatureand solvent-sensitive hydrogels, application to the swelling behavior of PNI-PAm hydrogels in ethanol/water mixtures. Chem Eng Sci. 2010;65(10):3223-30. [Crossref]
- Das M, Mardyani S, Chan WCW, Ku macheva E. Biofunctionalized pH-responsive microgels for cancer cell targeting: rational design. Advanced Materials. 2006;18:80-3. [Crossref]
- Nayak S, Lee H, Chmielewski J, Lyon LA. Flota-mediated cell targeting and cytotox-icity using thermoresponsive microgels. J Am Chem Soc. 2004;126(33):10258-9. [Crossref] [PubMed]
- Soppimath KS, Tan DCW, Yang Y. pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Advanced Materials. 2005;17(3):318-23. [Crossref]
- Ninawe PR, Hatziavramidis D, Parulekar SJ. Delivery of drug macromolecules from thermally responsive gel implants to the posterior eye. Chem Eng Sci. 2010;65(18):5170-7. [Crossref]
- Jia X, Yeo Y, Clifton RJ, Jiao T, Kohane DS, Kobler JB, et al. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules. 2006; 7(12):3336-44. [Crossref] [PubMed]
- Hu Z, Chen Y, Wang C, Zheng Y, Li Y. Polymer gels with engineered enviromentally responsive surface patterns. Nature. 1998;393: 149-52. [Crossref]
- Sahiner N, Sagbas S, Sahiner M, Silan C. P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):317-26. [Crossref] [PubMed]
- Pelton R. Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci. 2000;85(1):1-33. [Crossref]
- Jones CD, Lyon LA. Synthesis and characterization of multiresponsive core-shell mi-crogels. Macromolecules. 2000;33(22):8301-6. [Crossref]
- Mcphee W, Tam KC, Pelton R. Poly (N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. J Colloid Interface Sci. 1993;156(1):24-30. [Crossref]
- Zrinyi M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym Sci. 2000; 278(2):98-103. [Crossref]
- Nayak S, Lyon LA. Photoinduced phase transitions in poly(N-isopropylacrylamide) microgels. Chem Mater. 2004b;16(13):2623-7. [Crossref]
- Castelli F, Sarpietro MG, Micieli D, Ottimo S, Pitarresi G, Tripodo G, et al. Differen-tial scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. Eur J Pharm Sci. 2008;35(1-2):76-85. [Crossref] [PubMed]
- Naskar B, Dan A, Ghosh S, Moulik SP. Characteristic physicochemical features of the biopolymer inulin in solvent added and depleted states. Carbohydrate Polymer. 2010;81(3):700-6. [Crossref]
- Meyer D, Bayarri S, Tárrega A, Costell E. Inulin as texture modifier in dairy products. Food Hydrocolloids. 2011;25(8):1881-90. [Crossref]
- Kelly G. Inulin-type prebiotics--a review: part 1. Altern Med Rev. 2008;13(4):315-29. [PubMed]
- Muramatsu K, Nakajima M, Kikuchi M, Shimada S, Sasaki K, Masuda S, et al. In vitro cytocompatibility assessment of β-tricalcium phosphate/carboxymethyl-chitin composite. J Biomed Mater Res A. 2004;71(4):635-43. [Crossref] [PubMed]
- Wan Y, Fang Y, Wu H, Cao X. Porous polylactide/chitosan scaffolds for tissue engi-neer ing. J Biomed Mater Res A. 2007;80(4): 776-89. [Crossref] [PubMed]
- Link DP, van den Dolder J, van den Beucken JJ, Habraken W, Soede A, Boerman OC, et al. Evaluation of an orthotopically implanted calcium phosphate cement cantaining gelatin microparticles. J Biom Mater Res A. 2009;90(2):372-9. [Crossref] [PubMed]
- Sahiner N, Sagbas S. Multifunctional tunable p(inulin) microgels. Mater Sci Eng C Mater Biol Appl. 2014;40:366-72. [Crossref] [PubMed]
- Sahiner N, Sagbas S, Yoshida H, Lyon LA. Synthesis and properties of inulin based microgels. Colloid and Interface Science Com munications. 2014;2:15-8. [Crossref]
.: Process List