Objective: As we have been living through COVID19 pandemic for more than 5 months with its all detrimental impacts on our economic, social, and individual lives, developing models that will accurately inform us about the possible ending date of the pandemic locally or globally becomes ever more critical. In this study, we provide a data-driven model projecting the end-date of a given pandemic, specifically COVID-19. Material and Methods: To predict the end date of a given pandemic for early-phase and mature pandemic profiles, we propose a logistic-mixture modelling framework utilizing only the dates and number of infections (i.e., cases), where the level of mixing is determined in a datadriven way with one, two, three or four peaks. We assess the projection accuracy through model convergence and goodness of fit measures for countries that have controlled the pandemic. Results: We have shown that our logistic-mixture modelling approach has very favourable convergence and goodness of fit properties, especially when the number of local and global peaks and their timings are provided to the model carefully. Based on the projections of our model, using the available data as of June 01, 2020, the COVID-19 pandemic is ending in early September in Turkey, in early October in the United States of America, and not before December 2020 for the entire world. Conclusion: A mixture-logistic modelling framework is a flexible modelling strategy to capture multiple pandemic peaks and, therefore, a reasonable projection approach.
Keywords: COVID-19 pandemics; case projections; modelling pandemic end-date; mixture logistic modelling
Amaç: COVID-19 pandemisinin yıkıcı ekonomik, sosyal ve bireysel tüm etkilerini son beş aydır yakından yaşarken, pandeminin muhtemel bitiş tarihi hususunda bizleri doğru bir şekilde bilgilendiren modeller geliştirmek, hem yerel hem küresel olarak elzem hale gelmiştir. Bu çalışmada, özelde COVID-19 olmak üzere, herhangi bir pandeminin bitiş tarihini veriye dayalı olarak tahmin eden bir model sunuyoruz. Gereç ve Yöntemler: Herhangi bir pandeminin bitiş tarihinin, hem yeni hem de olgunlaşmış pandemi profilleri için, sadece vaka tarihleri ve günlük vaka sayılarını kullanılarak tahminde, karışım seviyesi veriye dayalı olarak bir, iki, üç ve dört zirveli olacak şekilde belirlenen, karma-lojistik modelleme çercevesi sunuyoruz. Tahminlerin doğruluğunu, model yakınsaması ve pandemiyi kontrol altına aldığı gözlenen ülkelerin verilerine uyum iyiliğiyle değerlendiriyoruz. Bulgular: Özellikle yerel ve global zirvelerin modele doğru bir şekilde verildiğinde, karmalojistik modelleme yaklaşımın, arzu edilen model yakınsaması ve uyum iyiliği özelliklerini taşıdığı gösterilmiştir. 1 Haziran 2020 tarihli verilere dayanan model tahminlerimize göre, COVID-19 pandemisi Türkiye'de Eylül 2020'de, Amerika Birleşik Devletleri'nde Ekim 2020'de sona erecek gözükürken, tüm dünyada Aralık 2020'den önce sona ermeyeceği sonucuna varılmıştır. Sonuç: Karma-lojistik modelleme çercevesi, pandeminin birden çok zirvesini yakalamakta esnek bir yapıya sahip olması hasebiyle, makul bir tahmin yaklaşımıdır.
Anahtar Kelimeler: COVID-19 pandemisi; vaka tahmini; pandemi bitiş tarihi modellemesi; karma-lojistik modeli
- Wang C, Pan R, Wan X, Tan Y, Xu L, Ho CS, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 Coronavirus Disease (COVID-19) epidemic among the general population in China. Int J Environ Res Public Health. 2020;17(5):1729. [Crossref] [PubMed] [PMC]
- Wang G, Zhang Y, Zhao J, Zhang J, Jiang F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet. 2020;395(10228):945-7. [Crossref] [PubMed]
- Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. Lancet Public Health. 2020;5(5):e256. [Crossref]
- Van Bavel JJ, Baicker K, Boggio PS, Capraro V, Cichocka A, Cikara M, et al. Using social and behavioural science to support COVID-19 pandemic response. Nat Hum Behav. 2020;4(5):460-71. [Crossref] [PubMed]
- Van Lancker W, Parolin Z. COVID-19, school closures, and child poverty: a social crisis in the making. Lancet Public Health. 2020;5(5):e243-4. [Crossref] [PubMed]
- Atkeson A. What will be the economic impact of COVID-19 in the us? Rough estimates of disease scenarios. Working Paper 26867. National Bureau of Economic Research; 2020 Mar 19. [Crossref] [PubMed]
- Fernandes N. Economic effects of coronavirus outbreak (COVID-19) on the world economy. 2020 Mar 22. https://foroparalapazenelmediterraneo.es/wp-content/uploads/2020/03/SSRN-id3557504.pdf.pdf
- Simha A, Prasad RV, Narayana S. A simple stochastic SIR model for covid 19 infection dynamics for karnataka: learning from Europe. arXiv preprint arXiv:2003.11920. 2020 Mar 26.
- Calafiore GC, Novara C, Possieri C. A modified sir model for the covid-19 contagion in Italy. arXiv preprint arXiv:2003.14391. 2020 Mar 31.
- Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165-74. [Crossref] [PubMed] [PMC]
- Luo J. When will COVID-19 end? Data-driven prediction. Singapore University of Technology and Design (http://www. sutd. edu. sg). 2020 Apr. https://www.flasog.org/static/COVID-19/COVID19PredictionPaper20200426.pdf
- Koçak M. A comparison of time-series models in predicting COVID-19 cases. Turkiye Klinikleri J Biostat. 2020;12(1):89-96. [Crossref]
.: Process List