Kontrolsüz hücre bölünmesi sonucu gelişen kanser günümüzün başta gelen hastalıklarından biridir. Görülme sıklığı ve kanser kaynaklı ölümler göz önünde bulundurulduğunda kanserin gün geçtikçe daha da yaygınlaştığı görülmektedir. Kanser tedavisinde cerrahi operasyon, kemoterapi, radyoterapi gibi geleneksel tedavi yöntemlerinin yanı sıra; tirozin kinaz inhibitörleri, kanser aşıları, gen tedavisi ve monoklonal antikorlar aracılığıyla hedefe yönelik tedavi yaklaşımı da son zamanlarda oldukça önem kazanmıştır. Günümüz tedavi protokollerinde hızla kendine yer bulan monoklonal antikor tedavisi, bu hedefe yönelik tedavi yaklaşımlarının başında gelmektedir. Monoklonal antikorlar, diğer kanser türlerinin yanı sıra, her üç kadından birinde gelişme riski bulunan ve en yaygın görülen kanser türlerinden olan meme kanserinde de kullanılmaktadır. Meme kanseri moleküler ve histolojik açıdan, hormon ve büyüme faktörü reseptör ekspresyonuna göre değerlendirildiğinde; hormon reseptör pozitif, insan epidermal büyüme faktörü reseptörü 2 pozitif ve üçlü negatif meme kanseri olarak üç farklı grup altında incelenmektedir. Monoklonal antikorlar hedefe spesifik oldukları için standart kemoterapiye göre daha tolere edilebilir bir sitotoksisite profili göstermektedir. Bu sayede monoklonal antikorlar her üç meme kanseri türünün tedavisi açısından oldukça önem kazanmış ve yeni bir dönemin başlamasına katkıda bulunmuştur. Sahip oldukları yan etki profilleri ve henüz gün yüzüne çıkmayan olumsuz etkileri gözetilerek kanıta dayalı bir şekilde ve tedavinin takip edilerek uygulanmasıyla birlikte önemli sonuçlar elde edileceği düşünülmektedir.
Anahtar Kelimeler: Meme kanseri; monoklonal antikorlar; immünoterapi
Cancer, which develops as a result of uncontrolled cell division, is one of the most leading diseases of today. Considering the incidence and deaths caused by cancer, it seems that cancer is becoming more common day by day. Besides traditional treatment methods such as surgery, chemotherapy, and radiotherapy, Targeted treatment approach through tyrosine kinase inhibitors, cancer vaccines, gene therapy and monoclonal antibodies has also gained great importance recently. Monoclonal antibody treatment, which is rapidly finding its place in today's treatment protocols, is one of the leading targeted treatment approaches. Monoclonal antibodies are also used in breast cancer, which is one of the most common cancer types, which has a risk of develini in one out of every three women, as well as other types of cancer. When breast cancer is evaluated molecularly and histologically and according to hormone and growth factor receptor expression; It is classified under three different major groups as hormone receptor positive, human epidermal growth factor receptor 2 positive and triple negative breast cancer. Because monoclonal antibodies are target specific, they show a more tolerable cytotoxicity profile than standard chemotherapy. In this way, monoclonal antibodies gained great importance in terms of the treatment of all three types of breast cancer and contributed to start a new era. It is thought that important results will be achieved if the treatment is followed and applied in an evidence-based manner, taking into account the side effect profiles they have and the negative effects that have not yet come to light.
Keywords: Breast cancer; monoclonal antibodies; immunotherapy
- Bayer V. An Overview of monoclonal antibodies. Semin Oncol Nurs. 2019;35(5):150927. [Crossref] [PubMed]
- Castelli MS, McGonigle P, Hornby PJ. The pharmacology and therapeutic applications of monoclonal antibodies. Pharmacol Res Perspect. 2019;7(6):e00535. [Crossref] [PubMed] [PMC]
- Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. antibodies (Basel). 2020;9(3):34. [Crossref] [PubMed] [PMC]
- Lee YT, Tan YJ, Oon CE. Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol. 2018;834:188-96. [Crossref] [PubMed]
- Sivaganesh V, Promi N, Maher S, Peethambaran B. Emerging immunotherapies against novel molecular targets in breast cancer. Int J Mol Sci. 2021;22(5):2433. [Crossref] [PubMed] [PMC]
- Henriques B, Mendes F, Martins D. Immunotherapy in breast cancer: when, how, and what challenges? Biomedicines. 2021;9(11):1687. [Crossref] [PubMed] [PMC]
- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. [Crossref] [PubMed]
- Ozdemir A, Kaplan Serin E, Savas M. Cancer risk factors and prevention in Turkey. International Journal of Health Services Research and Policy. 2018;3(3):143-50. [Crossref]
- Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893-917. [Crossref] [PubMed]
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7-30. [Crossref] [PubMed]
- Roy PS, Saikia BJ. Cancer and cure: a critical analysis. Indian J Cancer. 2016;53(3):441-2. [Crossref] [PubMed]
- Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8:227. [Crossref] [PubMed] [PMC]
- Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275-81. Corrected and republished in: J Clin Oncol. 2023;41(10):1809-15. [Crossref] [PubMed]
- Ryman JT, Meibohm B. Pharmacokinetics of Monoclonal Antibodies. CPT Pharmacometrics Syst Pharmacol. 2017;6(9):576-88. [Crossref] [PubMed] [PMC]
- García Merino A. Monoclonal antibodies. Basic features. Neurologia. 2011;26(5):301-6. English, Spanish. [Crossref] [PubMed]
- Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317-27. [Crossref] [PubMed] [PMC]
- Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278-87. [Crossref] [PubMed]
- Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immun. 2012;12:14. [PubMed] [PMC]
- Baldo BA. Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses. Oncoimmunology. 2013;2(10):e26333. [Crossref] [PubMed] [PMC]
- Guan M, Zhou YP, Sun JL, Chen SC. Adverse events of monoclonal antibodies used for cancer therapy. Biomed Res Int. 2015;2015:428169. [Crossref] [PubMed] [PMC]
- Fenn KM, Kalinsky K. Sacituzumab govitecan: antibody-drug conjugate in triple-negative breast cancer and other solid tumors. Drugs Today (Barc). 2019;55(9):575-85. [Crossref] [PubMed] [PMC]
- Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, et al. Breast cancer: biology, biomarkers, and treatments. Int Immunopharmacol. 2020;84:106535. [Crossref] [PubMed]
- Rugo HS, Bardia A, Tolaney SM, Arteaga C, Cortes J, Sohn J, et al. TROPiCS-02: A Phase III study investigating sacituzumab govitecan in the treatment of HR+/HER2- metastatic breast cancer. Future Oncol. 2020;16(12):705-15. [Crossref] [PubMed]
- Matutino A, Joy AA, Brezden-Masley C, Chia S, Verma S. Hormone receptor-positive, HER2-negative metastatic breast cancer: redrawing the lines. Curr Oncol. 2018;25(Suppl 1):S131-S41. [Crossref] [PubMed] [PMC]
- Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441-8. [Crossref] [PubMed]
- Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6(26):22496-512. Erratum in: Oncotarget. 2020;11(10):942. [Crossref] [PubMed] [PMC]
- Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-drug conjugates for cancer therapy. Molecules. 2020;25(20):4764. [Crossref] [PubMed] [PMC]
- Shvartsur A, Bonavida B. Trop2 and its overexpression in cancers: regulation and clinical/therapeutic implications. Genes Cancer. 2015;6(3-4):84-105. [Crossref] [PubMed] [PMC]
- Goldenberg DM, Stein R, Sharkey RM. The emergence of trophoblast cell-surface antigen 2 (TROP-2) as a novel cancer target. Oncotarget. 2018;9(48):28989-9006. [Crossref] [PubMed]
- Vidula N, Yau C, Rugo H. Trophoblast Cell Surface Antigen 2 gene (TACSTD2) expression in primary breast cancer. Breast Cancer Res Treat. 2022;194(3):569-75. [Crossref] [PubMed]
- Ambrogi F, Fornili M, Boracchi P, Trerotola M, Relli V, Simeone P, et al. Trop-2 is a determinant of breast cancer survival. PLoS One. 2014 May 13;9(5):e96993. Erratum in: PLoS One. 2014;9(10):e110606. [Crossref] [PubMed] [PMC]
- Starodub AN, Ocean AJ, Shah MA, Guarino MJ, Picozzi VJ Jr, Vahdat LT, et al. First-in-human trial of a novel anti-trop-2 antibody-SN-38 conjugate, sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin Cancer Res. 2015;21(17):3870-8. [Crossref] [PubMed] [PMC]
- Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-92. [Crossref] [PubMed]
- Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23(19):4265-74. [Crossref] [PubMed]
- Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280-90. [Crossref] [PubMed]
- Krop IE, LoRusso P, Miller KD, Modi S, Yardley D, Rodriguez G, et al. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J Clin Oncol. 2012;30(26):3234-41. [Crossref] [PubMed]
- Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, et al. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol. 2011;29(4):398-405. [Crossref] [PubMed]
- Hurvitz SA, Dirix L, Kocsis J, Bianchi GV, Lu J, Vinholes J, et al. Phase II randomized study of trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157-63. Erratum in: J Clin Oncol. 2013;31(23):2977. [Crossref] [PubMed]
- Diéras V, Miles D, Verma S, Pegram M, Welslau M, Baselga J, et al. Trastuzumab emtansine versus capecitabine plus lapatinib in patients with previously treated HER2-positive advanced breast cancer (EMILIA): a descriptive analysis of final overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18(6):732-42. Erratum in: Lancet Oncol. 2017;18(8):e433. Erratum in: Lancet Oncol. 2018;19(12):e667. [Crossref] [PubMed]
- Xu Z, Guo D, Jiang Z, Tong R, Jiang P, Bai L, et al. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: trastuzumab deruxtecan(DS-8201a) and (Vic-)trastuzumab duocarmazine (SYD985). Eur J Med Chem. 2019;183:111682. [Crossref] [PubMed]
- Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Set al. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016;22(20):5097-108. [Crossref] [PubMed]
- Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al; DESTINY-Breast01 investigators. Trastuzumab deruxtecan in previously treated HER2-Positive Breast Cancer. N Engl J Med. 2020;382(7):610-21. [PubMed] [PMC]
- Amiri-Kordestani L, Wedam S, Zhang L, Tang S, Tilley A, Ibrahim A, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20(21):5359-64. [Crossref] [PubMed]
- Swain SM, Baselga J, Kim SB, Ro J, Semiglazov V, Campone M, et al; CLEOPATRA Study Group. Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med. 2015;372(8):724-34. [Crossref] [PubMed] [PMC]
- Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast cancer. Cancer Immunol Immunother. 2021;70(3):607-17. [Crossref] [PubMed]
- Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al; IMpassion130 Trial Investigators. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379(22):2108-21. [Crossref] [PubMed]
- Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al; IMpassion130 Investigators. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44-59. [Crossref] [PubMed]
- Schmid P, Cortes J, Pusztai L, McArthur H, Kümmel S, Bergh J, et al; KEYNOTE-522 Investigators. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810-21. [Crossref] [PubMed]
- Emens LA, Loi S. Immunotherapy Approaches for Breast Cancer Patients in 2023. Cold Spring Harb Perspect Med. 2023;13(4):a041332. [Crossref] [PubMed]
- Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389(10074):1134-50. [Crossref] [PubMed]
.: Process List