Amaç: Oral dokularla temas eden restoratif materyaller bu dokularda inflamatuar, alerjik, toksik, mutajenik ve karsinojenik reaksiyonlara neden olabilmektedirler. Bu nedenle biyouyumluluk restoratif materyallerde ön planda tutulması gereken bir faktördür. Bu çalışmada rezin içerikli dolgu materyallerinin, dişeti fibroblast kök hücrelerine sitotoksik etkilerinin 3-(4,5-dimetiltiyazol- 2-yl)-2,5-difeniltetrazolyum bromür (MTT) analizi ile değerlendirilmesi amaçlanmıştır. Gereç ve Yöntemler: Çalışmada, yeni nesil (bir adet bulk fill, bir adet supra-nanohibrid, iki adet nanohibrid, iki adet mikrohibrid) altı farklı kompozit materyal kullanıldı. Çalışma grupları; XF: X-tra Fill (Voco- Almanya), GA: G- ænial Posterior (GC Tokyo Japonya), ES: Estelite Sigma Quick (Tokuyama-Japonya), GO: Grandio (Voco-Almanya), AB: Arabesk (Voco-Almanya) ve PS: Polofil Supra (Voco-Almanya) olarak hazırlandı. Her materyal için örnek sayısı 12 olarak belirlendi (n=12). Örnekler teflon kalıplar kullanılarak hazırlandı. GFBCs'lerin 72 saat süreyle örneklerle teması sonucu hücre canlılık oranları MTT analiziyle değerlendirildi. Bulgular: Grupların hücre canlılık oranları (%) sırasıyla; PS>AB>GO>ES>XF>GA olarak saptanmıştır. Sonuç: Bir materyalin sitotoksisitesinde; materyalin yapısı, içerdiği (doldurucu) oranı, monomer tipi, doldurucu içeriği gibi faktörlerin bir bütün olarak etkili olduğu, trietilen glikol dimetakrilat, etilen glikol dimetakrilat monomer varlığının materyalin potansiyel toksisite olasılığını artıran monomerler olduğu, doldurucu içeriğine eklenen parçacıkların (Fluro-alüminosilikat partikülleri, iterium trifluoride parçacıkları vb.) sitotoksisiteyi etkileyebileceği sonucuna varılmıştır.
Anahtar Kelimeler: Kompozit rezin; kök hücre; hücre canlılığı; sitotoksisite; MTT analizi
Objective: Restorative materials in contact with oral tissues may cause inflammatory, allergic, toxic, mutagenic and carcinogenic reactions in these tissues. Therefore, biocompatibility factor is a factor that must be kept in foreground in restorative materials. The aim of this study was to evaluate the cytotoxic effects of resin-containing filler materials on gingival fibroblast stem cells by 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide (MTT) analysis. Material and Methods: Six different composite materials of the new generation (one bulk fill, one supra-nanohybrid, two nanohybrid, two micro-hybrid) were used in the study. The study groups were prepared as XF: X-tra Fill (Voco-Germany), GA: G-anial Posterior (GC Tokyo Japan), ES: Estelite Sigma Quick (Tokuyama-Japan), GO: Grandio (Voco-Germany), AB: Arabesque (Voco-Germany) and PS: Polofil Supra (Voco-Germany). The number of samples for each material was determined as 12 (n=12). Samples were prepared by using teflon molds, and cell viability rates were evaluated by MTT analysis as a result of contact of the GFBCs with the samples for 72 hours. Results: Cell viability rates of the groups were as follows; PS> AB> GO> ES> XF> GA. Conclusion: The structure of the material, the rate of the monomer, the type of monomer and the content of the filler are effective for the cytotoxicity of a material as a whole. The presence of triethylene glycol dimethacrylate and ethylene glycol dimethylacrylate monomers which increase the potential for toxicity of the material, and the contents of the filler (Fluroalumino silicate particles, iterium trifluoride particles, etc.) can affect the cytotoxicity.
Keywords: Composite resin; stem cell; cell viability; cytotoxicity; MTT assay
- St-Georges AJ, Sturdevant JR, Swift EJ Jr, Thompson JY. Fracture resistance of prepared teeth restored with bonded inlay restorations. J Prosthet Dent. 2003;89(6):551-7. [Crossref]
- Unlu N, Cetin CA. [New developments in ingredient of composite resin materials: review]. Turkiye Klinikleri J Dental Sci. 2008;14(3):156-67.
- Babakhin AA, Volozhin AI, Dubova LV, Lebedenko IIu, Babakhina IuA, Zhuravleva AA, et al. [Histamine releasing activity of dental materials as the indicator of their biocompatibility]. Stomatologiia (Mosk). 2008;87(1):8-17.
- Gerzina TM, Hume WR. Effect of dentine on release of TEGDMA from resin composite in vitro. J Oral Rehabil. 1994;21(4):463-8. [Crossref] [PubMed]
- Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil. 2001;28(12):1106-15. [Crossref] [PubMed]
- Geurtsen W, Leyhausen G. Chemical-biological interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res. 2001;80(12):2046-50. [Crossref] [PubMed]
- Moharamzadeh K, Van Noort R, Brook IM, Scutt AM. HPLC analysis of components released from dental composites with different resin compositions using different extraction media. J Mater Sci Mater Med. 2007;18(1):133-7. [Crossref] [PubMed]
- Thonemann B, Schmalz G, Hiller KA, Schweikl H. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dent Mater. 2002;18(4):318-23. [Crossref]
- Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W. Metabolic effects of dental resin components in vitro detected by NMR spectroscopy. J Dent Res. 2001;80(3):869-75. [Crossref] [PubMed]
- Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W. TEGDMA causes apoptosis in primary human gingival fibroblasts. J Dent Res. 2003;82(10):814-8. [Crossref] [PubMed]
- Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 2009;16(8):1093-107. [Crossref] [PubMed] [PMC]
- Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL. A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem. 2007;366(2):197-206. [Crossref] [PubMed]
- Temple L, Kawabata TT, Munson AE, White KL Jr. Comparison of ELISA and plaque-forming cell assays for measuring the humoral immune response to SRBC in rats and mice treated with benzo[a]pyrene or cyclophosphamide. Fundam Appl Toxicol. 1993;21(4):412-9. [Crossref] [PubMed]
- Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods. 1993;160(1):81-8. [Crossref]
- Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol. 2007;5(1):127-36. [Crossref] [PubMed]
- Mandecki W, Ardelt B, Coradetti T, Davidowitz H, AFlint JA, Huang Z, et al. Microtransponders, the miniature RFID electronic chips, as platforms for cell growth in cytotoxicity assays. Cytometry A. 2006;69(11):1097-105. [Crossref] [PubMed]
- Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985;24(2-3):119-24. [Crossref]
- Feoktistova M, Geserick P, Leverkus M. Crystal violet assay for determining viability of cultured cells. Cold Spring Harb Protoc. 2016;(4):pdb.prot087379. [Crossref] [PubMed]
- Mjor IA. A comparison of in vivo and in vitro methods for toxicity testing of dental materials. Int Endod J. 1980;13(3):139-42. [Crossref] [PubMed]
- Altman FP. Tetrazolium salts and formazans. Prog Histochem Cytochem. 1976;9(3):1-56. [Crossref]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. [Crossref]
- Shimmura H, Tanabe K, Habiro K, Abe R, Toma H. Combination effect of mycophenolate mofetil with mizoribine on cell proliferation assays and in a mouse heart transplantation model. Transplantation. 2006;82(2):175-9. [Crossref] [PubMed]
- Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Cell Viability Assays, in Assay Guidance Manual; 2004. Online Book; 2013. https://www.ncbi.nlm.nih.gov/books/NBK144065/.
- Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral Biol Med. 2000;11(3):333-55. [Crossref] [PubMed]
- Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater. 1990;6(4):282-7. [Crossref]
- Trichaiyapon V, Torrungruang K, Panitvisai P. Cytotoxicity of flowable resin composite on cultured human periodontal ligament cells compared with mineral trioxide aggregate. J Investig Clin Dent. 2012;3(3):215-20. [Crossref] [PubMed]
- Gopferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103-14. [Crossref]
- Hume WR, Gerzina TM. Bioavailability of components of resin-based materials which are applied to teeth. Crit Rev Oral Biol Med. 1996;7(2):172-9. [Crossref]
- Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006;22(3):211-22. [Crossref] [PubMed]
- Durner J, Spahl W, Zaspel J, Schweikl H, Hickel R, Reichl FX. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent Mater. 2010;26(1):91-9. [Crossref] [PubMed]
- Bouillaguet S. Biological risks of resin-based materials to the dentin-pulp complex. Crit Rev Oral Biol Med. 2004;15(1):47-60. [Crossref] [PubMed]
- Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental resin monomers. J Dent Res. 2006;85(10):870-7. [Crossref] [PubMed]
- Schedle A, Ortengren U, Eidler N, Gabauer M, Hensten A. Do adverse effects of dental materials exist? What are the consequences, and how can they be diagnosed and treated? Clin Oral Implants Res. 2007;18 Suppl 3:232-56. [Crossref] [PubMed]
- Anagnostou M, Chatzigianni E, Doucoudakis S, Potamianou A, Tesseromatis C. Biocompatibility of resin composites subcutaneously implanted in rats with experimentally induced arthritis. Dent Mater. 2009;25(7):863-7. [Crossref] [PubMed]
- Peumans M, Van Meerbeek B, Lambrechts P, Vanherle G, Quirynen M. The influence of direct composite additions for the correction of tooth form and/or position on periodontal health. A retrospective study. J Periodontol. 1998;69(4):422-7. [Crossref] [PubMed]
- Kamalak H, Canan AC, Altin S. The mechanical properties of nanohybrid and bulk fill posterior composites. Biomed Res. 2018;29:2179-86. [Crossref]
- Franz A, Konig F, Anglmayer M, Rausch-Fan X, Gille G, Rausch WD, et al. Cytotoxic effects of packable and nonpackable dental composites. Dent Mater. 2003;19(5):382-92. [Crossref]
- Yildirim-Bicer AZ, Ergun G, Egilmez F, Demirkoprulu H. In vitro cytotoxicity of indirect composite resins: effect of storing in artificial saliva. Indian J Dent Res. 2013;24(1):81-6. [Crossref] [PubMed]
- Caughman WF, Caughman GB, Shiflett RA, Rueggeberg F, Schuster GS. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials. 1991;12(8):737-40. [Crossref]
- Longo DL, Paula-Silva FW, Faccioli LH, Gaton-Hernandez PM, Queiroz AM, Silva LA. Cytotoxicity and cytokine expression induced by silorane and methacrylate-based composite resins. J Appl Oral Sci. 2016;24(4):338-43. [Crossref] [PubMed] [PMC]
- Goncalves F, Campos LMP, Rodrigues-Junior EC, Costa FV, Marques PA, Francci CE, et al. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity. Braz Oral Res. 2018;32:e17. [Crossref]
- Banava S, Najibfard K, Garcia-Godoy F, Saghiri MA, Ghahremani MH, Ostad N. Impact of dilution and polymerization on cytotoxicity of dentin adhesives to human gingival fibroblasts: early exposure time. J Dent Res Dent Clin Dent Prospects. 2015;9(3):151-8. [Crossref] [PubMed] [PMC]
- Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21(4):441-52. [Crossref] [PubMed]
- Tanaka K, Taira M, Shintani H, Wakasa K, Yamaki M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J Oral Rehabil. 1991;18(4):353-62. [Crossref] [PubMed]
- Inoue K, Hayashi I. Residual monomer (Bis-GMA) of composite resins. J Oral Rehabil. 1982;9(6):493-7. [Crossref] [PubMed]
- Spahl W, Budzikiewicz H, Geurtsen W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J Dent. 1998;26(2):137-45. [Crossref]
- Yap AU, Han VT, Soh MS, Siow KS. Elution of leachable components from composites after LED and halogen light irradiation. Oper Dent. 2004;29(4):448-53.
- Schmalz G. Concepts in biocompatibility testing of dental restorative materials. Clin Oral Investig. 1997;1(4):154-62. [Crossref] [PubMed]
- Tabatabaee MH, Mahdavi H, Zandi S, Kharrazi MJ. HPLC analysis of eluted monomers from two composite resins cured with LED and halogen curing lights. J Biomed Mater Res B Appl Biomater. 2009;88(1):191-6. [Crossref] [PubMed]
- Attik N, Hallay F, Bois L, Brioude A, Grosgogeat B, Colon P. Mesoporous silica fillers and resin composition effect on dental composites cytocompatibility. Dent Mater. 2017;33(2):166-74. [Crossref] [PubMed]
- Kanjevac T, Milovanovic M, Volarevic V, Lukic ML, Arsenijevic N, Markovic D, et al. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Med Chem. 2012;8(1):40-5. [Crossref] [PubMed]
- Botsali MS, Kusgoz A, Altintas SH, Ulker HE, Tanriver M, Kilic S, et al. Residual HEMA and TEGDMA release and cytotoxicity evaluation of resin-modified glass ionomer cement and compomers cured with different light sources. ScientificWorld Journal. 2014;28:218295. [Crossref] [PubMed] [PMC]
.: Process List