Amaç: Katarakt cerrahisi geçiren gözlerde, optik biyometri ile belirlenen hedef refraktif sonuçlara ulaşılabilme seviyesinin ve bu seviyeye etki edebilecek oküler parametrelerin değerlendirilmesi. Gereç ve Yöntemler: Bu prospektif çalışmaya komplikasyonsuz fakoemülsifikasyon cerrahisi gerçekleştirilen 66 hastanın 70 gözü katıldı. Cerrahi öncesi ayrıntılı oftalmolojik muayeneleri gerçekleştirilen hastalara optik biyometriyle ölçümler yapılarak emetropiye en yakın göz içi lens (GİL) gücü hesaplandı. Ameliyat esnasında kapsül içine yerleştirilecek GİL gücü için biyometri cihazının hesapladığı hedef refraksiyon (HR) değerleri kaydedildi. Cerrahi sonrası birinci ayda hastalara ait sonuç refraksiyon (SR) değerleri ölçüldü. Refraktif sapma (RS), SR ile HR arasındaki fark olarak hesaplandı. Biyometrik parametreler ile RS arasındaki ilişki istatistiksel olarak incelendi. Bulgular: Çalışmaya katılan hastaların yaş ortalaması 67,93±9,40 idi. Ameliyat öncesi ortalama HR değerleri -0,10±0,21 D olarak ölçülen hastaların birinci aydaki SR değerleri ortalama +0,03±0,60 D idi (p=0,07). Hastalara ait RS miktarının ortalaması +0,13±0,60 D olarak hesaplandı. RS miktarı hastaların %31,4'ünde ±0,25 D, %62,9'unda ±0,50 D, %88,6'sında ise ±1,00 D aralığında olduğu görüldü. Biyometri cihazıyla elde edilen ameliyat öncesi ve sonrası döneme ait ortalama keratometrik değerlerin merkezi korneada benzer olduğu; ancak cerrahi sonrası aksiyel uzunluk değerlerinin öncesi döneme göre ortalama 0,07±0,04 mm daha kısa ölçüldüğü görüldü (p<0,01). Elde edilen RS değerleri ile ameliyat öncesi ve sonrası döneme ait hiçbir oküler parametre arasında anlamlı ilişki bulunamadı (p=0,94). Sonuç: Optik biyometri eşliğinde gerçekleştirilen komplikasyonsuz fakoemülsifikasyon cerrahisi sonrası RS miktarının klinik ve istatistiksel olarak ihmal edilebilir seviyede olduğu görülmüştür.
Anahtar Kelimeler: Biyometri; fakoemülsifikasyon; katarakt; refraksiyon
Objective: To evaluate the level of achieving target refractive results and possible ocular parameters that may affect this level in eyes undergoing cataract surgery. Material and Methods: Seventy eyes of 66 patients who underwent uncomplicated phacoemulsification surgery were included in this prospective study. The closest intraocular lens (IOL) power to emmetropia was calculated by optical biometry. The target refraction (TR) values calculated by the biometry device for the IOL power to be placed in the capsule during surgery was recorded. The final refraction (FR) values of the patients were measured at the first month after surgery. Refractive deviation (RD) was detected as the difference between FR and TR. The relationship between ocular biometric parameters and RD was analyzed statistically. Results: The mean age of the patients was 67.93±9.40. Preoperative mean TR values were measured as-0.10±0.21 D, and the mean FR values in the first month were +0.03±0.60 D (p=0.07). The mean amount of RD of the patients was calculated as +0.13±0.60 D. The amount of RD was in the range of ±0.25 D in 31.4% of patients, ±0.50 D in 62.9% and ±1.00 D in 88.6%. It was observed that the mean keratometric values obtained with the biometry device before and after surgery were similar in the central cornea. However, axial length values after surgery were measured as 0.07±0.04mm shorter than the preoperative values (p<0.01). There was no significant correlation between RD and ocular parameters evaluated before and after surgery (p=0.94). Conclusion: It was observed that the amount of RS was clinically and statistically negligible after uncomplicated phacoemulsification surgery performed with optical biometry.
Keywords: Biometrics; cataracts; phacoemulsification; refraction
- Congdon N, O'Colmain B, Klaver CC, Klein R, Mu-oz B, Friedman DS, et al; Eye Diseases Prevalence Research Group. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004; 122(4):477-85. [Crossref] [PubMed]
- Karel F. Lens ve hastalıkları. Aydın O'Dwyer P, Aydın Akova Y, editör. Temel Göz Hastalıkları. 3. baskı. Ankara: Güneş Tıp Kitapevi; 2015. p.415-28. [Link]
- Doğan M, Polat O, Yavaş GF, Küsbeci T, İnan S, İnan Ü. Göz içi lens gücü hesaplanmasında AL-Scan optik biyometri ile elde edilen biyometrik ölçümlerin güvenirliliği [The reliability of biometric measurements obtained by AL-Scan optic biometer in ıntraocular lens power calculation]. Turkiye Klin J Ophthalmol. 2015; 24(4):246-50. [Crossref]
- Madge SN, Khong CH, Lamont M, Bansal A, Antcliff RJ. Optimization of biometry for intraocular lens implantation using the Zeiss IOLMaster. Acta Ophthalmol Scand. 2005; 83(5):436-8. [Crossref] [PubMed]
- Çankaya C, Doğanay S. Göz içi lens gücü hesaplaması ve optik biometri [Intra ocular lens power calculation and optic biometry]. Glokom Katarakt Derg. 2011;6(4):207-14. [Link]
- Armstrong BK, Reggiani Mello G, Krueger RR. Ocular Biometry. In: Singh AD, Hayden BC, eds. Ophthalmic Ultrasonography. 1st ed. London: Elsevier Inc; 2012.p.63-75. [Link]
- Wang L, Houser K, Koch DD. Intraocular lens power calculations. In: Yanoff M, Duker JS, eds. Ophthalmology. 5th ed. China: Elsevier Inc.; 2019. p.342-348. [Link]
- Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg. 1992;18(2):125-9. [Crossref] [PubMed]
- Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry : intraobserver and interobserver reliability. J Cataract Refract Surg. 2001;27(12):1961-8. [Crossref] [PubMed]
- Kola M, Duran H, Turk A, Mollamehmetoglu S, Kalkisim A, Erdol H. Evaluation of the repeatability and the reproducibility of AL-Scan measurements obtained by residents. J Ophthalmol. 2014;2014:739652. [Crossref] [PubMed] [PMC]
- Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol. 1998;126(4):524-34. [Crossref] [PubMed]
- Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, et al. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003;29(10):1950-5. [Crossref] [PubMed]
- Kaswin G, Rousseau A, Mgarrech M, Barreau E, Labetoulle M. Biometry and intraocular lens power calculation results with a new optical biometry device: comparison with the gold standard. J Cataract Refract Surg. 2014; 40(4):593-600. [Crossref] [PubMed]
- Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of ocular biometry and intraocular lens power using a new biometer and a standard biometer. J Cataract Refract Surg. 2014;40(5):709-15. [Crossref] [PubMed]
- Srivannaboon S, Chirapapaisan C, Chonpimai P, Koodkaew S. Comparison of corneal astigmatism measurements of 2 optical biometer models for toric intraocular lens selection. J Cataract Refract Surg. 2015;41(2):364-71. [Crossref] [PubMed]
- Doğan M, Polat O, Karadaş M, Küsbeci T, Yavaş GF, İnan S, et al. Kataraktı olan gözlerde göz içi lens gücü hesaplanmasında parsiyel kohorens İnterferometri ile optik düşük kohorens reflektometri yöntemlerinin karşılaş tırılması [Comparison of partial coherence interferometry and optic low coherence reflectometry for intraocular lens power calculation in cataract patients]. Turk Oftalmoloiji Derg. 2014;44(6):419-23. [Crossref]
- Li J, Chen H, Savini G, Lu W, Yu X, Bao F, et al. Measurement agreement between a new biometer based on partial coherence interferometry and a validated biometer based on optical low-coherence reflectometry. J Cataract Refract Surg. 2016;42(1):68-75. [Crossref] [PubMed]
- Berk TA, Schlenker MB, Campos-Möller X, Pereira AM, Ahmed IIK. Visual and refractive outcomes in manual versus femtosecond laser-assisted cataract surgery: A single-center retrospective cohort analysis of 1838 eyes. Ophthalmology. 2018;125(8):1172-80. [Crossref] [PubMed]
- Eleftheriadis H. IOLMaster biometry: refractive results of 100 consecutive cases. Br J Ophthalmol. 2003;87(8):960-3. [Crossref] [PubMed] [PMC]
- Olsen T. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand. 2007;85(1):84-7. [Crossref] [PubMed]
- Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye (Lond). 2002;16(5):552-6. [Crossref] [PubMed]
- Connors R 3rd, Boseman P 3rd, Olson RJ. Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg. 2002;28(2):235-8. [Crossref] [PubMed]
- Lundström M, Dickman M, Henry Y, Manning S, Rosen P, Tassignon MJ, et al. Risk factors for refractive error after cataract surgery: Analysis of 282 811 cataract extractions reported to the European Registry of Quality Outcomes for cataract and refractive surgery. J Cataract Refract Surg. 2018;44(4):447-52. [Crossref] [PubMed]
- Kamış Ü, Kerimoğlu H, Bozkurt B, Turgut ÖB, Turan M, Özkağnıcı A. Göz içi lens gücünün hesaplanmasında IOLMaster ile alınan biyometrik ölçümlerin güvenilirliği [The reliability of biometric measurements taken with IOLMaster in calculation of intraocular lens power]. Glo-Kat. 2009;4(4):234-7. [Link]
- Lundström M, Barry P, Henry Y, Rosen P, Stenevi U. Evidence-based guidelines for cataract surgery: guidelines based on data in the European Registry of Quality Outcomes for Cataract and Refractive Surgery database. J Cataract Refract Surg. 2012;38(6):1086-93. [Crossref] [PubMed]
- Reitblat O, Levy A, Kleinmann G, Assia EI. Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Eye (Lond). 2018;32(7):1244-52. [Crossref] [PubMed] [PMC]
- Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry. Clin Exp Ophthalmol. 2009;37(6):566-9. [Crossref] [PubMed]
- Sugar A, Sadri E, Dawson DG, Musch DC. Refractive stabilization after temporal phacoemulsification with foldable acrylic intraocular lens implantation. J Cataract Refract Surg. 2001;27(11):1741-5. [Crossref] [PubMed]
- Caglar C, Batur M, Eser E, Demir H, Yaşar T. The stabilization time of ocular measurements after cataract surgery. Semin Ophthalmol. 2017;32(4):412-7. [Crossref] [PubMed]
- Wallace HB, Misra SL, Li SS, McKelvie J. Predicting pseudophakic refractive error: Interplay of biometry prediction error, anterior chamber depth, and changes in corneal curvature. J Cataract Refract Surg. 2018;44(9):1123-9. [Crossref] [PubMed]
- Conrad-Hengerer I, Al Sheikh M, Hengerer FH, Schultz T, Dick HB. Comparison of visual recovery and refractive stability between femtosecond laser-assisted cataract surgery and standard phacoemulsification: six-month follow-up. J Cataract Refract Surg. 2015;41(7): 1356-64. [Crossref] [PubMed]
- Chang SW, Yu CY, Chen DP. Comparison of intraocular lens power calculation by the IOLMaster in phakic and eyes with hydrophobic acrylic lenses. Ophthalmology. 2009;116(7): 1336-42. [Crossref] [PubMed]
- Prinz A, Neumayer T, Buehl W, Kiss B, Sacu S, Drexler W, et al. Influence of severity of nuclear cataract on optical biometry. J Cataract Refract Surg. 2006;32(7):1161-5. [Crossref] [PubMed]
- Akalın İ, Tüfek M, Türkyılmaz M, Öztürk F. Comparison of preoperative and postoperative measurements of optical low-coherence reflectometry biometry and assessment of its refractive predictability. Int Ophthalmol. 2019; 39(6):1337-43. [Crossref] [PubMed]
- Hildebrandt AL, Auffarth GU, Holzer MP. Präzision eines neuen Biometriegeräts zur Messung pseudophaker Augen [Precision of a new device for biometric measurements in pseudophakic eyes]. Ophthalmologe. 2011; 108(8):739-44. German. [Crossref] [PubMed]
.: Process List