Kolorektal kanser, dünyada ve ülkemizde en yaygın görülen üçüncü; kansere bağlı mortalite açısından ise dördüncü sırada yer alan önemli bir sağlık sorunudur. Oluşumunda genetik yatkınlığın payı olmakla birlikte; vakaların çoğunluğu sporadik olarak meydana gelmektedir. Özellikle obezite açısından düşünüldüğünde, yağ dokusunda artışla birlikte adipoz dokudan salınan adipokinlerin oranında değişim ile inflamasyon ve oksidatif stresin uyarılması kolorektal kanser gelişiminde uyarıcı olabilmektedir. Ayrıca nükleer faktör kappa-B (NF-κB) transkripsiyon faktörü ile uyarılmış inflamasyon, oksidatif stres ve lipit peroksidasyonunda artış veya inflamasyon ve oksidatif stres kaynaklı adiponektin/leptin oranında oluşan değişim kısır bir döngü halinde çeşitli mekanizmalar yoluyla kolorektal kanser gelişimini destekleyebilmektedir. Beslenme ile ilişkili risk faktörleri açısından ele alındığında ise diyet yağı, posası, antioksidan besin ögeleri, kırmızı et ve işlenmiş et ürünleri gibi birçok faktör kolorektal kanser gelişiminde rol alabilmektedir. Bu derlemede kolorektal kanser oluşumunda rol oynayan farklı mekanizmalar ve beslenme ile ilişkili risk faktörleri değerlendirilecektir.
Anahtar Kelimeler: Kolorektal kanser; adipokinler; inflamasyon; oksidatif stres; beslenme
Colorectal cancer, the third most common cancer in the world and in our country and the fourth in terms of cancer-related mortality, is a major health problem. Although there is genetic predisposition in the formation of colorectal cancer, the majority of cases are sporadic. Particularly when considered in terms of obesity, inflammation and oxidative stress induced by the change of adipokines released from the adipocytes with an increase in fat tissue may stimulate the development of colorectal cancer. In addition, increased nuclear factor kappa-B (NF-κB) transcription factor-induced inflammation, oxidative stress and lipid peroxidation or the change in adiponectin/leptin ratio due to inflammation and oxidative stress can support the development of colorectal cancer through various mechanisms in a vicious cycle. When considered in terms of nutritional risk factors, many factors such as dietary fat, dietary fiber, antioxidant nutrients, red meat and processed meat products can play a role in the development of colorectal cancer. In this review, different mechanisms that play a role in the formation of colorectal cancer and nutritional risk factors will be evaluated.
Keywords: Colorectal cancer; adipokines; inflammation; oxidative stress; nutrition
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87108. [Crossref] [PubMed]
- Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86. [Crossref] [PubMed]
- Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol. 2014;27(1):9-14. [PubMed] [PMC]
- Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191-7. [Crossref] [PubMed] [PMC]
- Grossmann ME, Cleary MP. The balance between leptin and adiponectin in the control of carcinogenesis-focus on mammary tumorigenesis. Biochimie. 2012;94(10):2164-71. [Crossref] [PubMed] [PMC]
- Wang S, Liu Z, Wang L, Zhang X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol. 2009;6(5):327-34. [Crossref] [PubMed] [PMC]
- Bowie A, O?Neill LA. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol. 2000;59(1):13-23. [Crossref]
- Mandal P. Potential biomarkers associated with oxidative stress for risk assessment of colorectal cancer. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(6):557-65. [Crossref] [PubMed]
- Per?e M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Research International. 2013; 2013.
- Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7(3):105-14. [PubMed] [PMC]
- Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 2016;15(3):195-203. [Crossref] [PubMed]
- Winawer SJ, Zauber AG. The advanced adenoma as the primary target of screening. Gastrointest Endosc Clin N Am. 2002;12(1):1-9. [Crossref]
- Nusko G, Mansmann U, Partzsch U, AltendorfHofmann A, Groitl H, Wittekind C, et al. Invasive carcinoma in colorectal adenomas: multivariate analysis of patient and adenoma characteristics. Endoscopy. 1997;29(07):626-31. [Crossref] [PubMed]
- Bond JH. Polyp guideline: diagnosis, treatment, and surveillance for patients with colorectal polyps. Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol. 2000;95(11):3053-63. [Crossref] [PubMed]
- Stewart SL, Wike JM, Kato I, Lewis D Michaud F. A population‐based study of colorectal cancer histology in the United States, 1998-2001. Cancer. 2006;107(5 Suppl):1128-41. [Crossref] [PubMed]
- Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg. 2016;68(1):7-11. [Crossref] [PubMed]
- Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-91. [Crossref] [PubMed]
- Murphy G, Devesa SS, Cross AJ, Inskip PD, McGlynn KA, Cook MB. Sex disparities in colorectal cancer incidence by anatomic subsite, race and age. Int J Cancer. 2011;128(7):1668-75. [Crossref] [PubMed] [PMC]
- Tawadros PS, Paquette IM, Hanly AM, Mellgren AF, Rothenberger DA, Madoff RD. Adenocarcinoma of the rectum in patients under age 40 is increasing: impact of signet-ring cell histology. Dis Colon Rectum. 2015;58(5):474-8. [Crossref] [PubMed]
- T.C. Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu. Türkiye Kanser İstatistikleri. Ankara: Türkiye Halk Sağlığı Kurumu; 2017. p.4.
- Janout V, Kollárová H. Epidemiology of colorectal cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2001;145(1):5-10. [Crossref] [PubMed]
- Cross AJ, Boca S, Freedman ND, Caporaso NE, Huang WY, Sinha R, et al. Metabolites of tobacco smoking and colorectal cancer risk. Carcinogenesis. 2014;35(7):1516-22. [Crossref] [PubMed] [PMC]
- Pöschl G, Seitz HK. Alcohol and cancer. Alcohol Alcohol. 2004;39(3):155-65. [Crossref] [PubMed]
- Arnold CN, Goel A, Blum HE, Boland CR. Molecular pathogenesis of colorectal cancer: implications for molecular diagnosis. Cancer. 2005;104(10):2035-47. [Crossref] [PubMed]
- Worthley DL, Leggett BA. Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev. 2010;31(2):31-8. [PubMed] [PMC]
- Grady WM. Genomic instability and colon cancer. Cancer Metastasis Rev. 2004;23(1-2):11[Crossref] [PubMed]
- Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015;36(7):461-70. [Crossref] [PubMed]
- Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab. 2011;301(4):E567-84. [Crossref] [PubMed] [PMC]
- Blüher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism. 2015;64(1):131-45. [Crossref] [PubMed]
- Blüher M. Importance of adipokines in glucose homeostasis. Diabetes Management. 2013; 3(5):389-400. [Crossref]
- Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115(5):911-9. [Crossref] [PubMed]
- Fantuzzi G. Adiponectin and inflammation: consensus and controversy. J Allergy Clin Immunol. 2008;121(2):326-30. [Crossref] [PubMed]
- An W, Bai Y, Deng SX, Gao J, Ben QW, Cai QC, et al. Adiponectin levels in patients with colorectal cancer and adenoma: a meta-analysis. Eur J Cancer Prev. 2012;21(2):126-33. [Crossref] [PubMed]
- Name N, Boonpipattanapong T, Palanusont A, Maneechay W, Sangkhathat S. Alteration of leptin and adiponectin in multistep colorectal tumorigenesis. Asian Pac J Cancer Prev. 2016;17(4):2119-23. [Crossref]
- Gialamas SP, Petridou ET, Tseleni-Balafouta S, Spyridopoulos TN, Matsoukis IL, Kondi-Pafiti A, et al. Serum adiponectin levels and tissue expression of adiponectin receptors are associated with risk, stage, and grade of colorectal cancer. Metabolism. 2011;60(11): 1530-8. [Crossref] [PubMed]
- Gonullu G, Kahraman H, Bedir A, Bektas A, Yücel I. Association between adiponectin, re sistin, insulin resistance, and colorectal tumors. Int J Colorectal Dis. 2010;25(2):205-12. [Crossref] [PubMed]
- Joshi RK, Kim WJ, Lee SA. Association between obesity-related adipokines and colorectal cancer: a case-control study and meta-analysis. World J Gastroenterol. 2014;20(24):7941-9. [Crossref] [PubMed] [PMC]
- Kumor A, Daniel P, Pietruczuk M, MałeckaPanas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. Int J Colorectal Dis. 2009;24(3):275-81. [Crossref] [PubMed]
- Otake S, Takeda H, Fujishima S, Fukui T, Orii T, Sato T, et al. Decreased levels of plasma adiponectin associated with increased risk of colorectal cancer. World J Gastroenterol. 2010;16(10):1252-7. [Crossref] [PubMed] [PMC]
- Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Interaction between adiponectin and leptin influences the risk of colorectal adenoma. Cancer Res. 2010;70(13):5430-7. [Crossref] [PubMed]
- Öztürk B, Kutlutürk F, Barut M, Akbaş A, Demirtaş A, Sezer E. [Serum adiponectin levels in three different solid tumors]. Turkish Journal of Diabetes and Obesity. 2018;2(2):65-71. [Cross ref]
- Xu XT, Xu Q, Tong JL, Zhu MM, Huang ML, Ran ZH, et al. Meta‐ analysis: circulating adiponectin levels and risk of colorectal cancer and adenoma. J Dig Dis. 2011;12(4):234-44. [Crossref] [PubMed]
- Koda M, Sulkowska M, Kanczuga-Koda L, Surmacz E, Sulkowski S. Overexpression of the obesity hormone leptin in human colorectal cancer. J Clin Pathol 2007;60(8):902-6. [Crossref] [PubMed] [PMC]
- Zubair A, Frieri M. Role of nuclear factor-ĸ B in breast and colorectal cancer. Curr Allergy Asthma Rep. 2013;13(1):44-9. [Crossref] [PubMed]
- Abdullah M, Rani AA, Sudoyo AW, Makmun D, Handjari DR, Hernowo BS. Expression of NFkB and COX2 in colorectal cancer among native Indonesians: the role of inflammation in colorectal carcinogenesis. Acta Med Indones. 2013;45(3):187-92. [PubMed]
- De Simone V, Franzè E, Ronchetti G, Colantoni A, Fantini MC, Di Fusco D, et al. Th17-type cytokines, IL-6 and TNFα synergistically activate STAT3 and NF-kB to promote colorectal cancer cell growth. Oncogene. 2015;34(27):3493-503. [Crossref] [PubMed] [PMC]
- Hai Ping P, Feng Bo T, Li L, Nan Hui Y, Hong Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys. 2016;604:20-6. [Crossref] [PubMed]
- Hoesel B, Schmid JA. The complexity of NFκB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86. [Crossref] [PubMed] [PMC]
- West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15(10):615-29. [Crossref] [PubMed]
- Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Advances in Cancer Research. 2015;128:173-96. [Crossref] [PubMed]
- Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4): 467-76. [Crossref] [PubMed]
- Chin CC, Chen CN, Kuo HC, Shi CS, Hsieh MC, Kuo YH, et al. Interleukin‐17 induces CC chemokine receptor 6 expression and cell migration in colorectal cancer cells. J Cell Physiol. 2015;230(7):1430-7. [Crossref] [PubMed]
- Ren H, Wang Z, Zhang S, Ma H, Wang Y, Jia L, et al. IL-17A promotes the migration and invasiveness of colorectal cancer cells through NF-κB-mediated MMP expression. Oncol Res. 2016;23(5):249-56. [Crossref] [PubMed]
- Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407(2):348-54. [Crossref] [PubMed]
- Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307. [Crossref] [PubMed] [PMC]
- Zenewicz LA, Flavell RA. IL ‐22 and inflammation: leukin' through a glass onion. Eur J Im munol. 2008;38(12):3265-8. [Crossref] [PubMed]
- Jiang R, Wang H, Deng L, Hou J, Shi R, Yao M, et al. IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer. 2013;13(1):59. [Crossref] [PubMed] [PMC]
- Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263-71. [Crossref] [PubMed]
- Duracková Z. Some current insights into oxidative stress. Physiol Res. 2010;59(4):459-69. [PubMed]
- Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012;2012:137289. [Crossref]
- Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603-16. [Crossref] [PubMed] [PMC]
- Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, et al. The relationship between 8-oxo-7, 8-dihydro-2'-deoxygu anosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res. 2008;640(1):170-3. [Crossref] [PubMed]
- Chang D, Wang F, Zhao YS, Pan HZ. Evaluation of oxidative stress in colorectal cancer patients. Biomed Environ Sci. 2008;21(4):286-9. [Crossref]
- Wu R, Feng J, Yang Y, Dai C, Lu A, Li J, et al. Significance of serum total oxidant/antioxidant status in patients with colorectal cancer. PloS One. 2017;12(1):e0170003. [Crossref] [PubMed] [PMC]
- Skrzydlewska E, Stankiewicz A, Sulkowska M, Sulkowski S, Kasacka I. Antioxidant status and lipid peroxidation in colorectal cancer. J Toxicol Environ Health Part A. 2001;64(3):213-22. [Crossref] [PubMed]
- Liu H, Liu X, Zhang C, Zhu H, Xu Q, Bu Y, et al. Redox imbalance in the development of colorectal cancer. J Cancer. 2017;8(9):1586-97. [Crossref] [PubMed] [PMC]
- Maffei F, Angeloni C, Malaguti M, Moraga JMZ, Pasqui F, Poli C, et al. Plasma antioxidant enzymes and clastogenic factors as possible biomarkers of colorectal cancer risk. Mutat Res. 2011;714(1):88-92. [Crossref] [PubMed]
- Ozdemirler Erata G, Kanbağli O, Durlanik O, Bulut T, Toker G, Uysal M. Induced oxidative stress and decreased expression of inducible heat shock protein 70 (ihsp 70) in patients with colorectal adenocarcinomas. Jpn J Clin Oncol. 2005;35(2):74-8. [Crossref] [PubMed]
- Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:630438. [Crossref] [PubMed] [PMC]
- Dianzani MU. 4-hydroxynonenal from pathology to physiology. Mol Aspects Med. 2003;24(4-5):263-72. [Crossref]
- Guéraud F. 4-hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radic Biol Med. 2017;111:196-208. [Crossref] [PubMed]
- Rossin D, Calfapietra S, Sottero B, Poli G, Biasi F. HNE and cholesterol oxidation products in colorectal inflammation and carcinogenesis. Free Radic Biol Med. 2017;111: 186-95. [Crossref] [PubMed]
- Gasparovic AC, Milkovic L, Sunjic SB, Zarkovic N. Cancer growth regulation by 4-hydroxynonenal. Free Radic Biol Med. 2017;111:226-34. [Crossref] [PubMed]
- Wang Z, Dou X, Gu D, Shen C, Yao T, Nguyen V, et al. 4-Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARγ and accelerating ubiquitin-proteasome degradation. Mol Cell Endocrinol. 2012;349(2):222-31. [Crossref] [PubMed] [PMC]
- Guo L, Zhang XM, Zhang YB, Huang X, Chi MH. Association of 4-hydroxynonenal with classical adipokines and insulin resistance in a Chinese non-diabetic obese population. Nutr Hosp. 2017;34(2):363-8. [Crossref] [PubMed]
- Cai F, Dupertuis YM, Pichard C. Role of polyunsaturated fatty acids and lipid peroxidation on colorectal cancer risk and treatments. Curr Opin Clin Nutr Metab Care. 2012;15(2):99-106. [Crossref] [PubMed]
- Bhagat SS, Ghone RA, Suryakar AN, Hundekar PS. Lipid peroxidation and antioxidant vitamin status in colorectal cancer patients. Indian J Physiol Pharmacol. 2011;55(1):72-6. [PubMed]
- Bayraktar MR, Harputluoğlu M, Bayraktar NM. [Investigation of serum c-reactive protein and malondialdehyde levels in patients with colon cancer]. Turkiye Klinikleri J Med Sci. 2007;27(1):13-5.
- Leung EY, Crozier JE, Talwar D, O'Reilly DS, McKee RF, Horgan PG, et al. Vitamin antioxidants, lipid peroxidation, tumour stage, the systemic inflammatory response and survival in patients with colorectal cancer. Int J Cancer. 2008;123(10):2460-4. [Crossref] [PubMed]
- Surinenaite B, Prasmickiene G, Milasiene V, Stratilatovas E, Didziapetriene J. The influence of surgical treatment and red blood cell transfusion on changes in antioxidative and immune system parameters in colorectal cancer patients. Medicina (Kaunas). 2009;45(10):785-91. [Crossref]
- Baena R, Salinas P. Diet and colorectal cancer. Maturitas. 2015;80(3):258-64. [Crossref] [PubMed]
- Perera PS, Thompson RL, Wiseman MJ. Recent evidence for colorectal cancer prevention through healthy food, nutrition, and physical activity: implications for recommendations. Curr Nutr Rep. 2012;1(1):44-54. [Crossref]
- Slattery ML, Fitzpatrick FA. Convergence of hormones, inflammation, and energy-related factors: a novel pathway of cancer etiology. Cancer Prev Res (Phila). 2009;2(11):922-30. [Crossref] [PubMed] [PMC]
- Coffer PJ. When less is more: the PI3K pathway as a determinant of tumor response to di etary restriction. Cell Res. 2009;19(7):797-9. [Crossref] [PubMed]
- Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62(6):933-47. [Crossref] [PubMed]
- Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PloS One. 2013;8(1):e53916. [Crossref] [PubMed] [PMC]
- Doleman B, Mills KT, Lim S, Zelhart MD, Gagliardi G. Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis. Tech Coloproctol. 2016;20(8):517-35. [Crossref] [PubMed]
- Artaç M, Korkmaz L, Coşkun HŞ, Dane F, Karabulut B, Karaağaç M, et al. Bevacuzimab may be less effective in obese metastatic colorectal cancer patients. J Gastrointest Cancer. 2018:1-7. [Crossref]
- Beeken RJ, Croker H, Heinrich M, Obichere A, Finer N, Murphy N, et al. The impact of diet‐induced weight loss on biomarkers for colorectal cancer: an exploratory study (INTERCEPT). Obesity (Silver Spring). 2017;25 Suppl 2:S95S101. [Crossref] [PubMed]
- Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology. 2015;148(6):1244-60.e16. [Crossref] [PubMed] [PMC]
- Day SD, Enos RT, McClellan JL, Steiner JL, Velázquez KT, Murphy EA. Linking inflammation to tumorigenesis in a mouse model of highfat-diet-enhanced colon cancer. Cytokine. 2013;64(1):454-62. [Crossref] [PubMed] [PMC]
- Tang FY, Pai MH, Chiang EP. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem. 2012;23(10):1302-13. [Crossref] [PubMed]
- Dahm CC, Keogh RH, Lentjes MA, Spencer EA, Key TJ, Greenwood DC, et al. Intake of dietary fats and colorectal cancer risk: prospective findings from the UK Dietary Cohort Consortium. Cancer Epidemiol. 2010;34(5):562-7. [Crossref] [PubMed]
- Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr. 2011;50(3):173-84. [Crossref] [PubMed]
- Kwan HY, Chao X, Su T, Fu XQ, Liu B, Tse AK, et al. Dietary lipids and adipocytes: potential therapeutic targets in cancers. J Nutr Biochem. 2015;26(4):303-11. [Crossref] [PubMed]
- Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935-45. [Crossref] [PubMed]
- West NJ, Clark SK, Phillips RK, Hutchinson JM, Leicester RJ, Belluzzi A, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 2010;59(7):918-25. [Crossref] [PubMed]
- Mocellin MC, Camargo CQ, Nunes EA, Fiates GMR, Trindade EBSM. A systematic review and meta-analysis of the n-3 polyunsaturated fatty acids effects on inflammatory markers in colorectal cancer. Clin Nutr. 2016;35(2):359-69. [Crossref] [PubMed]
- Song M, Chan AT, Fuchs CS, Ogino S, Hu FB, Mozaffarian D, et al. Dietary intake of fish, ω ‐3 and ω ‐6 fatty acids and risk of colorectal cancer: a prospective study in U.S. men and women. Int J Cancer. 2014;135(10):2413-23. [Crossref] [PubMed] [PMC]
- Shen XJ, Zhou JD, Dong JY, Ding WQ, Wu JC. Dietary intake of n-3 fatty acids and colorectal cancer risk: a meta-analysis of data from 489 000 individuals. Br J Nutr. 2012;108(9):1550-6. [Crossref] [PubMed]
- Davis CD, Milner JA. Gastrointestinal microflora, food components and colon cancer prevention. J Nutr Biochem. 2009;20(10):743-52. [Crossref] [PubMed] [PMC]
- Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. [Crossref] [PubMed] [PMC]
- Kunzmann AT, Coleman HG, Huang WY, Kitahara CM, Cantwell MM, Berndt SI. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the prostate, lung, colorectal, and ovarian cancer screening trial. Am J Clin Nutr. 2015;102(4):881-90. [Crossref] [PubMed] [PMC]
- Ben Q, Sun Y, Chai R, Qian A, Xu B, Yuan Y. Dietary fiber intake reduces risk for colorectal adenoma: a meta-analysis. Gastroenterology. 2014;146(3):689-99.e6. [Crossref] [PubMed]
- Murphy N, Norat T, Ferrari P, Jenab M, Buenode-Mesquita B, Skeie G, et al. Dietary fibre in take and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PloS One. 2012;7(6):e39361. [Crossref] [PubMed] [PMC]
- Uchida K, Kono S, Yin G, Toyomura K, Nagano J, Mizoue T, et al. Dietary fiber, source foods and colorectal cancer risk: the Fukuoka Colorectal Cancer Study. Scand J Gastroenterol. 2010;45(10):1223-31. [Crossref] [PubMed]
- Hansen L, Skeie G, Landberg R, Lund E, Palmqvist R, Johansson I, et al. Intake of dietary fiber, especially from cereal foods, is associated with lower incidence of colon cancer in the HELGA cohort. Int J Cancer. 2012;131(2):469-78. [Crossref] [PubMed]
- Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6(2):41-51. [Crossref] [PubMed] [PMC]
- Williams CD, Satia JA, Adair LS, Stevens J, Galanko J, Keku TO, et al. Antioxidant and DNA methylation-related nutrients and risk of distal colorectal cancer. Cancer Causes Con trol. 2010;21(8):1171-81. [Crossref] [PubMed] [PMC]
- La Vecchia C, Decarli A, Serafini M, Parpinel M, Bellocco R, Galeone C, et al. Dietary total antioxidant capacity and colorectal cancer: a large case-control study in Italy. Int J Cancer. 2013;133(6):1447-51. [Crossref] [PubMed]
- Papaioannou D, Cooper KL, Carroll C, Hind D, Squires H, Tappenden P, et al. Antioxidants in the chemoprevention of colorectal cancer and colorectal adenomas in the general population: a systematic review and meta‐analysis. Col orectal Dis. 2011;13(10):1085-99. [Crossref] [PubMed]
- Mekary RA, Wu K, Giovannucci E, Sampson L, Fuchs C, Spiegelman D, et al. Total antioxidant capacity intake and colorectal cancer risk in the Health Professionals Follow-up Study. Cancer Causes Control. 2010;21(8):1315-21. [Crossref] [PubMed] [PMC]
- Vece MM, Agnoli C, Grioni S, Sieri S, Pala V, Pellegrini N, et al. Dietary total antioxidant capacity and colorectal cancer in the Italian EPIC cohort. PloS One. 2015;10(11):e0142995. [Crossref] [PubMed] [PMC]
- Weng CJ, Yen GC. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev. 2012;38(1):76-87. [Crossref] [PubMed]
- Antony ML, Singh SV. Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyl trisulfide. Indian J Exp Biol. 2011;49(11):805-16. [PubMed] [PMC]
- World Canser Research Fund, American Institute for Cancer Research. Continuous Update Project Report Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer; 2011. p.43.
- Hu JY, Hu YW, Zhou JJ, Zhang MW, Li D, Zheng S. Consumption of garlic and risk of colorectal cancer: an updated meta-analysis of prospective studies. World J Gastroenterol. 2014;20(41):15413-22. [Crossref] [PubMed] [PMC]
- Zamora‐Ros R, Barupal DK, Rothwell JA, Jenab M, Fedirko V, Romieu I, et al. Dietary flavonoid intake and colorectal cancer risk in the European prospective investigation into cancer and nutrition (EPIC) cohort. Int J Cancer. 2017;140(8):1836-44. [Crossref] [PubMed] [PMC]
- Demeyer D, Mertens B, De Smet S, Ulens M. Mechanisms linking colorectal cancer to the consumption of (processed) red meat: a review. Crit Rev Food Sci Nutr. 2016;56(16):2747-66. [Crossref] [PubMed]
- Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer. Nutr Res. 2013;33(12):983-94. [Crossref] [PubMed]
- Bernstein AM, Song M, Zhang X, Pan A, Wang M, Fuchs CS, et al. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PloS One. 2015;10(8):e0135959. [Crossref] [PubMed] [PMC]
- Zhao Z, Feng Q, Yin Z, Shuang J, Bai B, Yu P, et al. Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8(47): 83306-14. [Crossref] [PubMed] [PMC]
- Carr PR, Walter V, Brenner H, Hoffmeister M. Meat subtypes and their association with colorectal cancer: systematic review and meta‐ analysis. Int J Cancer. 2016;138(2):293-302. [Crossref] [PubMed]
- Carr PR, Jansen L, Bienert S, Roth W, Herpel E, Kloor M, et al. Associations of red and processed meat intake with major molecular pathological features of colorectal cancer. Eur J Epidemiol. 2017;32(5):409-18. [Crossref] [PubMed]
- Chiavarini M, Bertarelli G, Minelli L, Fabiani R. Dietary intake of meat cooking-related mutagens (HCAs) and risk of colorectal adenoma and cancer: a systematic review and metaanalysis. Nutrients. 2017;9(5):514. [Crossref] [PubMed] [PMC]
- Joshi AD, Kim A, Lewinger JP, Ulrich CM, Potter JD, Cotterchio M, et al. Meat intake, cooking methods, dietary carcinogens, and colorectal cancer risk: findings from the Colorectal Cancer Family Registry. Cancer Med. 2015;4(6):936-52. [Crossref] [PubMed] [PMC]
- Newmark HL, Wargovich MJ, Bruce WR. Colon cancer and dietary fat, phosphate, and calcium: a hypothesis. J Natl Cancer Inst. 1984;72(6):1323-5. [PubMed]
- Lamprecht SA, Lipkin M. Cellular mechanisms of calcium and vitamin D in the inhibition of colorectal carcinogenesis. Ann N Y Acad Sci. 2001;952(1):73-87. [Crossref]
- Llor X, Jacoby RF, Teng BB, Davidson NO, Sitrin MD, Brasitus TA. K-ras mutations in 1, 2dimethylhydrazine-induced colonic tumors: effects of supplemental dietary calcium and vitamin D deficiency. Cancer Res.1991;51(16):4305-9. [PubMed]
- Parodi PW. Cows' milk fat components as potential anticarcinogenic agents. J Nutr. 1997;127(6):1055-60. [Crossref] [PubMed]
- Tsuda H, Kozu T, Iinuma G, Ohashi Y, Saito Y, Saito D, et al. Cancer prevention by bovine lactoferrin: from animal studies to human trial. Biometals. 2010;23(3):399-409. [Crossref] [PubMed]
- Norat T, Riboli E. Dairy products and colorectal cancer. A review of possible mechanisms and epidemiological evidence. Eur J Clin Nutr. 2003;57(1):1-17. [Crossref] [PubMed]
- Murphy N, Norat T, Ferrari P, Jenab M, Buenode-Mesquita B, Skeie G, et al. Consumption of dairy products and colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS One. 2013;8(9):e72715. [Crossref] [PubMed] [PMC]
- Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, et al. Dairy products and col orectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23(1):37-45. [Crossref] [PubMed]
- Ralston RA, Truby H, Palermo CE, Walker KZ. Colorectal cancer and nonfermented milk, solid cheese, and fermented milk consumption: a systematic review and meta-analysis of prospective studies. Crit Rev Food Sci Nutr. 2014;54(9):1167-79. [Crossref] [PubMed]
- Yang B, McCullough ML, Gapstur SM, Jacobs EJ, Bostick RM, Fedirko V, et al. Calcium, vitamin D, dairy products, and mortality among colorectal cancer survivors: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol. 2014;32(22):2335-43. [Crossref] [PubMed]
- Keum N, Aune D, Greenwood DC, Ju W, Giovannucci EL. Calcium intake and colorectal cancer risk: dose-response meta‐ analysis of prospective observational studies. Int J Cancer. 2014;135(8):1940-8. [Crossref] [PubMed]
- Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, van den Brandt PA, Colditz GA, et al. Dairy foods, calcium, and colorectal cancer: a pooled analysis of 10 cohort studies. J Natl Cancer Inst. 2004;96(13):1015-22. [Crossref] [PubMed]
- Kim YI. Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev. 2004;13(4):511-9. [PubMed]
- Kennedy DA, Stern SJ, Moretti M, Matok I, Sarkar M, Nickel C, et al. Folate intake and the risk of colorectal cancer: a systematic review and meta-analysis. Cancer Epidemiol. 2011;35(1):2-10. [Crossref] [PubMed]
- Moazzen S, Dolatkhah R, Tabrizi JS, Shaarbafi J, Alizadeh BZ, de Bock GH, et al. Folic acid intake and folate status and colorectal cancer risk: a systematic review and meta-analysis. Clin Nutr. 2017 Oct 28. Doi: 10.1016/j.clnu.2017.10.010. [Epub ahead of print]. [Crossref]
- Giovannucci E. Epidemiologic studies of folate and colorectal neoplasia: a review. J Nutr. 2002;132(8 Suppl): 2350-5. [Crossref] [PubMed]
- Kim YI. Folic acid fortification and supplementation--good for some but not so good for others. Nutr Rev. 2007;65(11):504-11. [Crossref] [PubMed]
- Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94(7):3290-5. [Crossref] [PubMed] [PMC]
- Bassett JK, Severi G, Hodge AM, Baglietto L, Hopper JL, English DR, et al. Dietary intake of B vitamins and methionine and colorectal cancer risk. Nutr Cancer. 2013;65(5):659-67. [Crossref] [PubMed]
- Zhang XH, Ma J, Smith-Warner SA, Lee JE, Giovannucci E. Vitamin B6 and colorectal cancer: current evidence and future directions. World J Gastroenterol. 2013;19(7):1005-10. [Crossref] [PubMed] [PMC]
- Larsson SC, Orsini N, Wolk A. Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA. 2010;303(11): 1077-83. [Crossref] [PubMed]
- Liu Y, Yu QY, Zhu ZL, Tang PY, Li K. Vitamin B2 intake and the risk of colorectal cancer: a meta-analysis of observational studies. Asian Pac J Cancer Prev. 2015;16(3):909-13. [Crossref] [PubMed]
- Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342-57. [Crossref] [PubMed]
- Zhang X, Giovannucci E. Calcium, vitamin D and colorectal cancer chemoprevention. Best Pract Res Clin Gastroenterol. 2011;25(45):485-94. [Crossref] [PubMed]
- Grant WB. A critical review of Vitamin D and cancer: a report of the IARC Working Group on vitamin D. Dermatoendocrinol. 2009;1(1):25-33. [Crossref] [PubMed] [PMC]
- Wei MY, Garland CF, Gorham ED, Mohr SB, Giovannucci E. Vitamin D and prevention of colorectal adenoma: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2008;17(11): 2958-69. [Crossref] [PubMed]
- Gorham ED, Garland CF, Garland FC, Grant WB, Mohr SB, Lipkin M, et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mole Biol. 2005;97(1-2):179-94. [Crossref] [PubMed]
- 154. Ying HQ, Sun HL, He BS, Pan YQ, Wang F, Deng QW, et al. Circulating vitamin D binding protein, total, free and bioavailable 25-hydroxyvitamin D and risk of colorectal cancer. Sci Rep. 2015;5:7956. [Crossref] [PubMed] [PMC]
- Anic GM, Weinstein SJ, Mondul AM, Männistö S, Albanes D. Serum vitamin D, vitamin D binding protein, and risk of colorectal cancer. PloS One. 2014;9(7):e102966. [Crossref] [PubMed] [PMC]
- Kızılkaya B, Ayaz T, Bilir C. [Vitamin D levels and its prognostic effect in oncology patients]. J Hum Rhythm. 2017;3(2):101-5.
- Ambalam P, Raman M, Purama RK, Doble M. Probiotics, prebiotics and colorectal cancer pre vention. Best Pract Res Clin Gastroenterol. 2016;30(1):119-31. [Crossref] [PubMed]
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. [Crossref] [PubMed]
- Horie H, Zeisig M, Hirayama K, Midtvedt T, Möller L, Rafter J. Probiotic mixture decreases DNA adduct formation in colonic epithelium induced by the food mutagen 2-amino-9H-pyrido [2, 3-b] indole in a human-flora associated mouse model. Eur J Cancer Prev. 2003;12(2):101-7. [Crossref] [PubMed]
- Foo NP, Ou Yang H, Chiu HH, Chan HY, Liao CC, Yu CK, et al. Probiotics prevent the development of 1, 2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J Agric Food Chem. 2011;59(24):13337-45. [Crossref] [PubMed]
- Chen ZF, Ai LY, Wang JL, Ren LL, Yu YN, Xu J, et al. Probiotics clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015;10(9):1433-45. [Crossref] [PubMed]
- Bauer-Marinovic M, Florian S, Müller-Schmehl K, Glatt H, Jacobasch G. Dietary resistant starch type 3 prevents tumor induction by 1, 2dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon. Carcinogenesis. 2006;27(9):1849-59. [Crossref] [PubMed]
- Hijova E, Szabadosova V, Strojny L, Bomba A. Changes chemopreventive markers in colorectal cancer development after inulin supplementation. Bratisl Lek Listy. 2014;115(2): 76-9. [Crossref]
- Rafter J, Bennett M, Caderni G, Clune Y, Hughes R, Karlsson PC, et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr. 2007;85(2):488-96. [Crossref] [PubMed]
- Worthley DL, Le Leu RK, Whitehall VL, Conlon M, Christophersen C, Belobrajdic D, et al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr. 2009;90(3):578-86. [Crossref] [PubMed]
.: Process List