Klinikte fonksiyonel performans testleri (FPT) (örneğin atlama, denge vb.), genellikle fizyoterapistler ve spor bilimciler tarafından bir sporcunun performansını, yaralanma risk profilini, yaralanma sonrası durumunu, rehabilitasyon sürecini ve spora geri dönmeye hazır olup olmadığını belirlemek için kullanılır. FPT yalnızca fiziksel performansı ölçmekle sınırlandırılmıştır. Oysaki spor aktiviteleri sadece fiziksel performanstan etkilenmez, çevresel uyaranlardan ve nörobilişsel yetenekten etkilenir. Bu sebeple FPT, nörobilişsel yeteneği de ölçen parametreler eklenerek yeni testler oluşturulmaya başlanmıştır. Bu testler, nörobilişsel fonksiyonel performans testleri olarak adlandırılmaktadır. Bu çalışmanın amacı, son 3 yıl içinde yayımlanmış olan klinik nörobilişsel fonksiyonel performans testlerinden bahsetmektir. Tüm yayınlar çalışma yöntemleri ve bulguları açısından sistematize edilerek incelenmiştir. Nörobilişsel fonksiyonel performans testleri, görsel uyaranların eklendiği reaksiyon zamanını ölçen Fitlight-training sistem kullanılarak zenginleştirilmiş testlerdir. Belirli bir testi uyarlamak için çok sayıda değişken (örneğin sensör sırası, ışık rengi/tipi, sinyal zaman aşımı ve gecikme veya sesi) değiştirilebilir. Nörobilişsel sıçrama testleri, reaktif denge testi ve motor kognitif testler sensörler kullanılarak tasarlanmış testlerdir. Bu şekilde çevre algısı ve karar vermeyi birleştiren nörobilişsel fonksiyonel performans testleri geliştirilmiştir. Bu testler, farklı belirsizlikler içerir ve sporcunun karar verme, denge ve görsel-motor tepki süresi ile ilgili bileşenlerin kapasitesini test eder. Fakat testlerde sporcunun kaygı veya motivasyonunu etkileyen ses ve insan faktörünün olmaması sebebiyle hâlâ gerçek bir spor ortamı sağlanabilmiş değildir. İşitsel ve somatosensöriyel uyaranlar eklenerek testler zenginleştirilebilir.
Anahtar Kelimeler: Sporcu; fonksiyonel performans test; nörobilişsel
Clinically, functional performance tests (FPT) (e.g. jumping, balance, etc.) are often used by physiotherapists and sports scientists to determine an athlete's performance, injury risk profile, post-injury status, rehabilitation process, and readiness to return to sports. FPT is limited to measuring physical performance only. However, sports activities are not only affected by physical performance, but also by environmental stimuli and neurocognitive ability. For this reason, new tests have been started to be created by adding parameters that measure FPT and neurocognitive ability. These tests are called neurocognitive functional performance tests. The aim of this study is to talk about clinical neurocognitive functional performance tests published in the last 3 years. All publications were systematized and examined in terms of study methods and findings. Neurocognitive functional performance tests are enriched tests using the Fitlight-training system, which measures the reaction time to which visual stimuli are added. Numerous variables (eg sensor order, light color/type, signal timeout and delay or sound) can be changed to tailor a particular test. Neurocognitive jump tests, reactive balance tests and motor cognitive tests are tests designed using sensors. In this way, neurocognitive functional performance tests have been developed that combine environmental perception and decision making. These tests contain different uncertainties and test the capacity of the components related to decision making, balance and visual-motor reaction time of the athlete. However, due to the absence of sound and human factors affecting the anxiety or motivation of the athlete in the tests, a real sports environment has still not been achieved. Tests can be enriched by adding auditory and somatosensory stimuli.
Keywords: Athlete; functional performance test; neurocognitive
- Bahr R. Why screening tests to predict injury do not work-and probably never will?: a critical review. Br J Sports Med. 2016;50(13):776-80. [Crossref] [PubMed]
- Hegedus EJ, McDonough SM, Bleakley C, Baxter D, Cook CE. Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury. Part 2--the tests for the hip, thigh, foot and ankle including the star excursion balance test. Br J Sports Med. 2015;49(10):649-56. [Crossref] [PubMed]
- Verschueren J, Tassignon B, De Pauw K, Proost M, Teugels A, Van Cutsem J, et al. Does acute fatigue negatively affect intrinsic risk factors of the lower extremity injury risk profile? A systematic and critical review. Sports Med. 2020;50(4):767-84. [Crossref] [PubMed]
- Glasgow P, Bleakley CM, Phillips N. Being able to adapt to variable stimuli: the key driver in injury and illness prevention? Br J Sports Med. 2013;47(2):64-5. [Crossref] [PubMed]
- Chimera NJ, Warren M. Use of clinical movement screening tests to predict injury in sport. World J Orthop. 2016;7(4):202-17. [Crossref] [PubMed] [PMC]
- Hegedus EJ, McDonough S, Bleakley C, Baxter GD, DePew JT, Bradbury I, et al. Physical performance tests predict injury in National Collegiate Athletic Association athletes: a three-season prospective cohort study. Br J Sports Med. 2016;50(21):1333-7. [Crossref] [PubMed]
- Tassignon B, Verschueren J, Delahunt E, Smith M, Vicenzino B, Verhagen E, et al. Criteria-based return to sport decision-making following lateral ankle sprain injury: a systematic review and narrative synthesis. Sports Med. 2019;49(4):601-19. [Crossref] [PubMed]
- Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):2347-53. [Crossref] [PubMed] [PMC]
- Wilkerson GB. Neurocognitive reaction time predicts lower extremity sprains and strains. International Journal of Athletic Therapy and Training. 2012;17(6):4-9. [Crossref]
- Verschueren J, Tassignon B, Pluym B, Van Cutsem J, Verhagen E, Meeusen R. Bringing context to balance: development of a reactive balance test within the injury prevention and return to sport domain. Arch Physiother. 2019;9:6. [Crossref] [PubMed] [PMC]
- Millikan N, Grooms DR, Hoffman B, Simon JE. The development and reliability of 4 clinical neurocognitive single-leg hop tests: implications for return to activity decision-making. J Sport Rehabil. 2019;28(5):536-44. [Crossref] [PubMed]
- Wilke J, Vogel O, Ungricht S. Can we measure perceptual-cognitive function during athletic movement? A framework for and reliability of a sports-related testing battery. Phys Ther Sport. 2020;43:120-6. [Crossref] [PubMed]
- Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the star excursion balance test. N Am J Sports Phys Ther. 2009;4(2):92-9. [PubMed] [PMC]
- Tassignon B, Verschueren J, De Wachter J, Maricot A, De Pauw K, Verhagen E, et al. Test-retest, intra- and inter-rater reliability of the reactive balance test in healthy recreational athletes. Phys Ther Sport. 2020;46:47-53. [Crossref] [PubMed]
- Ludyga S, Tränkner S, Gerber M, Pühse U. Effects of judo on neurocognitive indices of response inhibition in preadolescent children: a randomized controlled trial. Med Sci Sports Exerc. 2021;53(8):1648-55. [Crossref] [PubMed]
- Abeare C, Messa I, Whitfield C, Zuccato B, Casey J, Rykulski N, et al. Performance validity in collegiate football athletes at baseline neurocognitive testing. J Head Trauma Rehabil. 2019 ;34(4):E20-31. [Crossref] [PubMed]
- Ludyga S, Mücke M, Leuenberger R, Bruggisser F, Pühse U, Gerber M, et al. Behavioral and neurocognitive effects of judo training on working memory capacity in children with ADHD: A randomized controlled trial. Neuroimage Clin. 2022;36:103156. [Crossref] [PubMed] [PMC]
- Avery M, Wattie N, Holmes M, Dogra S. Seasonal changes in functional fitness and neurocognitive assessments in youth ice-hockey players. J Strength Cond Res. 2018;32(11):3143-52. [Crossref] [PubMed]
- Mulligan I, Boland M, Payette J. Prevalence of neurocognitive and balance deficits in collegiate aged football players without clinically diagnosed concussion. J Orthop Sports Phys Ther. 2012;42(7):625-32. [Crossref] [PubMed]
.: Process List