Amaç: Rasyon bileşimi, ırk ve çevresel faktörler (sıcaklık, stres, uygun olmayan barındırma vb.) rumen fonksiyonunu ve enterik metan (CH4) emisyonunu (salınımı) olumsuz etkileyen yaygın faktörlerdir. Her bir geviş getiren hayvanın her gün küresel iklim değişikliği ile birlikte en güçlü sera gazlarından olan CH4 salınımına neden olduğu göz önünde bulundurulursa keçilerin buradaki katkısı da muhakkak araştırılmalıdır. Gereç ve Yöntemler: Kesitsel (durum saptama) bu araştırmada, saha koşullarında sağlıklı görünümde 29 Saanen Keçisinde onar g laktuloz yükleme testi sonrası nefes testi yapılarak CH4 gazı salınımı araştırıldı. Özel torbalara 12-47 sn'lik sürelerde laktuloz yüklemesini müteakip 0, 30, 60 ve 90. dk'larda ekshale nefes (hava) toplanarak eş zamanlı uygulamalar sonrası elde edilen gaz dinamiklerinin araştırılması için Sunvou Nefes Analizatörüne aktarıldı. Elde edilen gaz dinamiklerine ait grafikler software program aracığında PDF dokümanlarına dönüştürülerek sonuçlar irdelendi. Bulgular: Grupların kendi içerisinde karşılaştırmasında fark çıkmasa da ölçüm zamanlarının hepsi farklı çıkmıştır. Laktuloz yüklemesi sonrası sırası ile 0, 30, 60 ve 90. dk'lar karşılaştırıldığında sabah 08.00 verileri ile öğlen 12.00 değerleri arasında belirgin istatistiksel farklılıklar belirendi. Sıfırıncı dk yani bazal çıkış değerleri (laktuloz yükleme testi öncesi ortalama±standart hata değerleri ppm cinsiden) 12,20±0,92 (sabah 08.00) ve 24,13±4,67 (öğlen 12.00) (p<0,001) metan emisyonunu gösterirken, 90. dk'larda sırası ile sabah ve öğlen değerleri 14,20±3,33 ve 22,25±3,54 ppm olarak belirlendi. Sonuç: Sıcaklık artışı ve dolaylı stresin metan gazı salınımını artırdığı ve keçilerde bu durumun dikkate alınarak gerekli kontrol stratejilerinin geliştirilmesi gerekliliği açıktır.
Anahtar Kelimeler: İklim; keçi; metan gazı; sıcaklık stresi
Objective: Diet composition, breed and environmental factors (temperature, stress, inappropriate housing etc.) are common factors that negatively affect rumen function and enteric methane (CH4) emission. Considering that each ruminant animal causes CH4 emission, one of the most powerful greenhouse gases together with global climate change, every day, the contribution of goats here should definitely be investigated. Material and Methods: In this cross-sectional (condition determination) study, CH4 gas emission was investigated by performing breath tests after 10 g lactulose loading test in 29 healthy Saanen Goats under field conditions. Exhaled breath (air) was collected in special bags at 0th, 30th, 60th and 90th minutes following lactulose loading for 12-47 seconds and transferred to Sunvou Breath Analyzer for the investigation of gas dynamics obtained after simultaneous applications. The obtained gas dynamics graphs were converted into PDF documents by software program and the results were examined. Results: Although there was no difference in the comparison of the groups within themselves, all measurement times were different. When the 0th, 30th, 60th and 90th minutes after lactulose loading were compared, significant statistical differences were determined between the 08.00 morning data and 12.00 noon values. While the 0th minute, i.e. basal output values (mean±standard error values before lactulose loading test in ppm) showed methane emissions of 12.20±0.92 (08.00 morning) and 24.13±4.67 (12.00 noon) (p<0.001), at the 90th minute, the morning and noon values were determined as 14.20±3.33 and 22.25±3.54 ppm, respectively. Conclusion: It is clear that temperature increase and indirect stress increase methane gas release and that the necessary control strategies should be developed in goats by taking this situation into account.
Keywords: Climate; goat; methane gas; heat stress
- Pragna P, Chauhan SS, Sejian V, Leury BJ, Dunshea FR. Climate change and goat production: enteric methane emission and its mitigation. Animals (Basel). 2018;8(12):235. [Crossref] [PubMed] [PMC]
- Pragna P, Sejian V, Soren NM, Bagath M, Krishnan G, Beena V, et al. Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. Biol Rhythm Res. 2018;49(4):551-65. [Crossref]
- Hirayama T, Katoh K, Obara Y. Effects of heat exposure on nutrient digestibility, rumen contraction and hormone secretion in goats. Anim Sci J. 2004;75(3):237-43. [Crossref]
- Pinares-Patiño CS, Baumont R, Martin C. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can J Anim Sci. 2003;83(4):769-77. [Crossref]
- Yadav B, Singh G, Verma AK, Dutta N, Sejian V. Impact of heat stress on rumen functions. Vet World. 2013;6(12):992-6. [Crossref]
- Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal. 2010;4(7):1167-83. [Crossref] [PubMed]
- Freestone P, Lyte M. Stress and microbial endocrinology: prospects for ruminant nutrition. Animal. 2010;4(7):1248-57. [Crossref] [PubMed]
- López MC, Ródenas L, Piquer O, Martínez E, Cerisuelo A, Cervera C, et al. Determination of the proportion of the ingested gross energy lost as exhaled methane by dairy goats consuming contrasting concentrate ingredients in mixed rations. Can J Anim Sci. 2010;90(4):585-90. [Crossref]
- Aguilera JF, Prieto C. Methane production in goats given diets based on lucerne hay and barley. Arch Tierernahr. 1991;41(1):77-84. [Crossref] [PubMed]
- Kataria RP. Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol Res. 2015;6(1):6120. [Crossref]
- Feleke FB, Berhe M, Gebru G, Hoag D. Determinants of adaptation choices to climate change by sheep and goat farmers in Northern Ethiopia: the case of Southern and Central Tigray, Ethiopia. SpringerPlus. 2016;5:1-15. [Crossref] [PubMed] [PMC]
- Bezabih MY, Berhane G. Livestock production systems analysis. Am Int J Contemp Sci Res. 2014;1(2):16-51. [Link]
- Thornton PK. Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci. 2010;365(1554):2853-67. [Crossref] [PubMed] [PMC]
- Brahmi A, Khaldi R, Jaouad M, Hicheri A, Touati I, Rkhissi A, et al. Impacts of climate change on the small ruminants farming systems in north western Tunisia and adaptation tools. In: Acar Z, López-Francos A, Porqueddu C, eds. New Approaches for Grassland Research in a Context of Climate and Socio-Economic Changes. 1st ed. Zaragoza, Spain: CIHEAM; 2012. p.427-31.
- Koluman N, Silanikove N, Koluman A. Climate change and goat agriculture interactions in the mediterranean region. In: Simões J, Gutiérrez C, eds. Sustainable Goat Production in Adverse Environments. 1st ed. Cham, Switzerland: Springer; 2017. p.393-405. [Crossref]
- Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N. Review: adaptation of animals to heat stress. Animal. 2018;12(s2):s431-s44. [Crossref] [PubMed]
- Bernabucci U, Lacetera N, Danieli PP, Bani P, Nardone A, Ronchi B. Influence of different periods of exposure to hot environment on rumen function and diet digestibility in sheep. Int J Biometeorol. 2009;53(5):387-95. [Crossref] [PubMed]
- Pollott G, Wilson RT. Sheep and Goats for Diverse Products and Profits. FAO Diversification Booklet No. 9. Rome, Italy: FAO Library; 2009. [Link]
- Oluwatayo IB, Oluwatayo TB. Small ruminants as a source of financial security: a case study of women in rural southwest Nigeria. Working Paper 1. Irvine, CA, USA: Institute for Money, Technology and Financial Inclusion (IMTFI); 2012. [Link]
- Aziz MA. Present status of the world goat populations and their productivity. World. 2010;861:1. [Link]
- Lérias JR, Hernández-Castellano LE, Suárez-Trujillo A, Castro N, Pourlis A, Almeida AM. The mammary gland in small ruminants: major morphological and functional events underlying milk production--a review. J Dairy Res. 2014;81(3):304-18. [Crossref] [PubMed]
- Kumar S, Roy MM. Small ruminant's role in sustaining rural livelihoods in arid and semiarid regions and their potential for commercialization. New Paradigms in Livestock Production from Traditional to Commercial Farming and Beyond. 1st ed. Udaipur, India: Agrotech Publishing Academy; 2013. p.57-80.
- Agossou DJ, Dougba TD, Koluman N. Recent developments in goat farming and perspectives for a sustainable production in Western Africa. Int J Environ Agric Biotechnol. 2017;2(4):2047-51. [Crossref]
- Sevim S. Aydın ili büyükbaş ve küçükbaş hayvancılığının mevcut durumu [Current situation of cattle and small ruminant breeding in Aydın province]. Hayvan Bilimi ve Ürünleri Dergisi. 2022;5(1):48-61. [Crossref]
- Baumgard LH, Rhoads RP. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. J Anim Sci. 2012;90(6):1855-65. [Crossref] [PubMed]
- Uyeno Y, Sekiguchi Y, Tajima K, Takenaka A, Kurihara M, Kamagata Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe. 2010;16(1):27-33. [Crossref] [PubMed]
- Mbanzamihigo L, Fievez V, da Costa Gomez C, Piattoni F, Carlier L, Demeyer D. Methane emissions from the rumen of sheep fed a mixed grass-clover pasture at two fertilisation rates in early and late season. Can J Anim Sci. 2002;82(1):69-77. [Crossref]
- Ulyatt MJ, Lassey KR, Shelton ID, Walker CF. Methane emission from sheep grazing four pastures in late summer in New Zealand. New Zeal J Agr Res. 2005;48:385-90. [Crossref]
- Ulyatt MJ, Lassey KR, Shelton ID, Walker CF. Methane emission from dairy cows and wether sheep fed subtropical grass‐dominant pastures in midsummer in New Zealand. New Zeal J Agr Res. 2002;45(4):227-34. [Crossref]
- Aluwong T, Wuyep PA, Allam L. Livestock-environment interactions: methane emissions from ruminants. Afr J Biotechnol. 2011;10(8):1265-9. [Link]
- Brouček J. Methane yield from cattle, sheep, and goats housing with emphasis on emission factors: a review. Slovak J Anim Sci. 2015;48(3):122-39. [Link]
- Bhatta R, Malik PK, Sejian V. Enteric methane emission and reduction strategies in sheep. In: Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi SMK, Lal R, eds. Sheep Production Adapting to Climate Change. 1st ed. Singapore: Springer; 2017. p.291-305. [Crossref]
- Castillo-González AR, Burrola-Barraza ME, Domínguez-Viveros J, Chávez-Martínez A. Rumen microorganisms and fermentation. Arch Med Vet. 2014;46(3):349-61. [Crossref]
- Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 2013;7 Suppl 2:220-34. [Crossref] [PubMed]
- Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, et al. Special topics--Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91(11):5045-69. [Crossref] [PubMed]
.: Process List