Amaç: Bu çalışmada, fetal olgularda konjenital kalp anomalileri (KKA) sıklığı, malformasyonun tipi/dağılımı ve sitogenetik ve moleküler sitogenetik tanı yöntemlerinin KKA'nın prenatal tanısındaki etkinliğinin araştırılması amaçlandı. Gereç ve Yöntemler: 2014-2021 yılları arasında, fetal ultrasonografide (USG) çeşitli patolojiler sebebiyle karyotip analizi, 22q11.2 delesyon sendromuna özgü prob kullanılarak (N25/D22S75, ARSA, Aquarius-Cytocell) floresan in-situ hibridizasyon [fluorescence in-situ hybridization (FISH)] incelemesi ve kromozomal mikrodizin (KMD) çalışması yapılan 951 fetal olgu arasında KKA saptanan 192'si bu çalışmada değerlendirildi. Olguların fetal hücrelerinden genomik DNA izolasyonu kit protokolüne göre (MagNA Pure LC DNA İzolasyon Kiti I) yapılarak KMD (180K, Agilent SurePrint G3 Hmn CGH+SNP) uygulandı. Bulgular: KKA'lı 192 fetal olgunun soy geçmişlerinde, kardiyak anomaliler için gebelik öyküsü veya 1. derece akrabalarında benzer patolojik bulguların varlığı %9,9 oranında saptandı. KKA'lı olguların 23'üne konvansiyonel sitogenetik ve moleküler sitogenetik yöntemleriyle tanı konuldu (23/192, %12). Olguların 11'i karyotip ve KMD (11/23, %47,8), 3 olguda (3/23, %13) FISH incelemesi, 9 olguda ise (9/23, %39,1) KMD analizi ile anomali saptandı. Genetik tanı alan olgular, birden fazla kardiyak anomali (kompleks) ve/veya diğer organ tutulumlarına sahipti. Bu teknikler ile herhangi bir patoloji saptanmayan 169 olgunun 21'inde (%12,4) USG'de tek bir kardiyak anomali (izole) saptanırken, kompleks kardiyak anomalisi olan olgu sayısı 44 (%26) idi. Yüz dört olguda ise (%61,5), kardiyak anomalinin yanı sıra minör/majör multisistemik tutulumlar mevcuttu. Sonuç: KKA'lı olguların erken prenatal tanısı, gebelik sürecinin yönetimi ve genetik danışmada önem taşımaktadır. Bu çalışmada, fetal USG'de KKA saptanan olgularda (izole, kompleks, multisistemik tutulumlu) genetik etiyolojisinin aydınlatılmasına diğer sitogenetik teknikleri ile birlikte KMD analizinin katkısı %12 olarak bulundu. USG'de izole kardiyak bulgu olsa dahi tüm KKA'lı olgulara KMD analizi önerilebilir.
Anahtar Kelimeler: Konjenital kalp anomalileri; kromozomal mikrodizin; karyotip; floresan in-situ hibridizasyon
Objective: In this study, we aimed to investigate the frequency of congenital heart anomalies (CHA), the type/distribution of malformations and the effectiveness of conventional genetic diagnosis methods in the prenatal diagnosis of CHA in fetal cases. Material and Methods: In this study, CHA was detected in 192 of 951 cases in which karyotype analysis, fluorescence in-situ hybridization (FISH) examination using 22q11.2 deletion syndrome specific probe (N25/D22S75, ARSA, Aquarius-Cytocell) and chromosomal microarray (CMA) study were performed due to various pathologies in fetal ultrasonography (USG) between 2014 and 2021. Genomic DNA isolation from fetal cells of the cases was performed according to the kit protocol (MagNA Pure LC DNA Isolation Kit I) and CMA (180K, Agilent SurePrint G3 Hmn CGH+SNP) was performed. Results: In the family history of 192 fetal cases with CHA, pregnancy history for cardiac anomalies or presence of similar pathological findings in their first degree relatives was found in 9.9%. Twenty-three of the CHA cases were diagnosed by conventional cytogenetic and molecular cytogenetic methods (23/192, 12%). Anomaly was detected by karyotyping and CMA in 11 cases (11/23, 47.8%), by FISH in 3 cases (3/23, 13%), and by CMA analysis in 9 cases (9/23, 39.1%). The cases with genetic diagnosis had more than one cardiac anomaly (complex) and/or other organ involvement. Of the 169 cases whose pathology was not detected by these techniques, a single heart anomaly (isolated) was detected on USG in 21 of them (12.4%) and complex heart anomaly was found in 44 of them (26%). In 104 cases (61.5%), there were minor/major multisystemic involvements as well as cardiac anomaly. Conclusion: Early prenatal diagnosis of CHA cases is important in the management of pregnancy process and genetic counseling. In this study, the contribution of CMA analysis in combination with other cytogenetic techniques to elucidate the genetic etiology of cases (isolated, complex, multisystemic involvement) with CHA was determined as 12%. CMA analysis can be recommended for all patients with CHA, even if there is isolated cardiac finding on USG.
Keywords: Congenital heart anomalies; chromosomal microarray; karyotype; fluorescence in-situ hybridization
- Qiao F, Hu P, Xu Z. Application of next-generation sequencing for the diagnosis of fetuses with congenital heart defects. Curr Opin Obstet Gynecol. 2019;31(2):132-8. [Crossref] [PubMed]
- Nora JJ. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation. 1968;38(3):604-17. [Crossref] [PubMed]
- Williams K, Carson J, Lo C. Genetics of Congenital Heart Disease. Biomolecules. 2019;9(12):879. [Crossref] [PubMed] [PMC]
- Chung WK. Genetic basis of congenital heart disease. In: Ginsburg G, Willard H, Woods CW, Tsalik EL, eds. Genomic and Precision Medicine. 3rd ed. London: Elsevier; 2018. p.221-34. [Crossref] [PubMed]
- Qiao F, Wang Y, Zhang C, Zhou R, Wu Y, Wang C, et al. Comprehensive evaluation of genetic variants using chromosomal microarray analysis and exome sequencing in fetuses with congenital heart defect. Ultrasound Obstet Gynecol. 2021;58(3):377-87. [Crossref] [PubMed]
- Huber D, Voith von Voithenberg L, Kaigala GV. Fluorescence in situ hybridization (FISH): History, limitations and what to expect from micro-scale FISH? Micro and Nano Engineering. 2018;1:15-24. [Crossref]
- Yonehara Y, Nakatsuka T, Ichioka S, Sasaki N, Kobayashi T. CATCH 22 Syndrome. J Craniofac Surg. 2002;13(5):623-6. [Crossref] [PubMed]
- Nacheva EP, Grace CD, Bittner M, Ledbetter DH, Jenkins RB, Green AR. Comparative genomic hybridization: a comparison with molecular and cytogenetic analysis. Cancer Genet Cytogenet. 1998;100(2):93-105. [Crossref] [PubMed]
- van Nisselrooij AEL, Lugthart MA, Clur SA, Linskens IH, Pajkrt E, Rammeloo LA, et al. The prevalence of genetic diagnoses in fetuses with severe congenital heart defects. Genet Med. 2020;22(7):1206-14. [Crossref] [PubMed] [PMC]
- Rooney DE, Czepulkowski BH. Human Cytogenetics: A Practical Approach. Vol. II. 2nd ed. Oxford: IRL Press; 1992.
- Pinkel D, Straume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A. 1986;83(9):2934-8. [Crossref] [PubMed] [PMC]
- Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-57. Erratum in: Genet Med. 2021;23(11):2230. [Crossref] [PubMed] [PMC]
- Saenz RB, Beebe DK, Triplett LC. Caring for infants with congenital heart disease and their families. Am Fam Physician. 1999;59(7):1857-68. [PubMed]
- Çetiner N, Çeliker A. Konjenital kalp hastalıklarında epidemiyoloji, genetik yönler, fetal değerlendirme ve sınıflandırma. Üzüm K, editör. Konjenital Kalp Hastalıkları. 1. Baskı. Ankara: Türkiye Klinikleri; 2021. p.1-5. [Link]
- Wójtowicz A, Madetko-Talowska A, Wójtowicz W, Szewczyk K, Huras H, Bik-Multanowski M. Cardiovascular anomalies among 1005 fetuses referred to invasive prenatal testing-a comprehensive cohort study of associated chromosomal aberrations. Int J Environ Res Public Health. 2022;19(16):10019. [Crossref] [PubMed] [PMC]
- Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175-84. [Crossref] [PubMed] [PMC]
- Grande M, Jansen FA, Blumenfeld YJ, Fisher A, Odibo AO, Haak MC, et al. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;46(6):650-8. [Crossref] [PubMed]
- Lund IC, Christensen R, Petersen OB, Vogel I, Vestergaard EM. Chromosomal microarray in fetuses with increased nuchal translucency. Ultrasound Obstet Gynecol. 2015;45(1):95-100. [Crossref] [PubMed]
- Jansen FA, Blumenfeld YJ, Fisher A, Cobben JM, Odibo AO, Borrell A, et al. Array comparative genomic hybridization and fetal congenital heart defects: a systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015;45(1):27-35. [Crossref] [PubMed]
- Rachamadugu SI, Miller KA, Lee IH, Ying S. Zou, Genetic detection of congenital heart disease, Gynecology and Obstetrics Clinical Medicine, 2022;2(3):109-23. [Crossref]
- Sarac Sivrikoz T, Basaran S, Has R, Karaman B, Kalelioglu IH, Kirgiz M, et al. Prenatal sonographic and cytogenetic/molecular findings of 22q11.2 microdeletion syndrome in 48 confirmed cases in a single tertiary center. Arch Gynecol Obstet. 2022;305(2):323-42. [Crossref] [PubMed]
- Besseau-Ayasse J, Violle-Poirsier C, Bazin A, Gruchy N, Moncla A, Girard F, et al. A French collaborative survey of 272 fetuses with 22q11.2 deletion: ultrasound findings, fetal autopsies and pregnancy outcomes. Prenat Diagn. 2014;34(5):424-30. [Crossref] [PubMed]
- Noël AC, Pelluard F, Delezoide AL, Devisme L, Loeuillet L, Leroy B, et al. Fetal phenotype associated with the 22q11 deletion. Am J Med Genet A. 2014;164A(11):2724-31. [Crossref] [PubMed]
- Bretelle F, Beyer L, Pellissier MC, Missirian C, Sigaudy S, Gamerre M, et al. Prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. Eur J Med Genet. 2010;53(6):367-70. [Crossref] [PubMed]
- Kurahashi H, Akagi K, Inazawa J, Ohta T, Niikawa N, Kayatani F, et al. Isolation and characterization of a novel gene deleted in DiGeorge syndrome. Hum Mol Genet. 1995;4(4):541-9. [Crossref] [PubMed]
- Kamath BM, Thiel BD, Gai X, Conlin LK, Munoz PS, Glessner J, et al. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat. 2009;30(3):371-8. [Crossref] [PubMed] [PMC]
- Attarian S, Fatehi F, Rajabally YA, Pareyson D. Hereditary neuropathy with liability to pressure palsies. J Neurol. 2020;267(8):2198-206. [Crossref] [PubMed]
- Hartman RJ, Rasmussen SA, Botto LD, Riehle-Colarusso T, Martin CL, Cragan JD, et al. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol. 2011;32(8):1147-57. [Crossref] [PubMed]
- Wimalasundera RC, Gardiner HM. Congenital heart disease and aneuploidy. Prenat Diagn. 2004;24(13):1116-22. [Crossref] [PubMed]
- Wang Y, Cao L, Liang D, Meng L, Wu Y, Qiao F, et al. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstet Gynecol. 2018;218(2):244.e1.e17. Erratum in: Am J Obstet Gynecol. 2018. [Crossref] [PubMed]
.: Process List