Kanser kaşeksisi (KK); beslenme desteğiyle düzelmeyen, ilerleyici fonksiyonel bozulma, iskelet kas kütlesi kaybı ile karakterize çok faktörlü bir sendromdur ve ileri evre kanser hastalarında oldukça yüksek oranlarda görülmektedir. Prekaşeksi, kaşeksi ve refrakter kaşeksi olarak 3 evresi bulunmaktadır. Sistemik inflamasyon, tümör hücrelerinden proinflamatuar sitokin üretimiyle tetiklenmektedir. Sitokin üretiminin organlara yayılma etkisi akut faz yanıtı, katabolik-anabolik uyarı değişimleri, artmış enerji harcaması, azalmış enerji alımı, anoreksiya, insülin direnci, oksidatif stres artışı, mitokodriyal disfonksiyon, yağ dokusunda ve kasta kayıplara yol açmaktadır. KK'de çok faktörlü patofizyoloji nedeniyle kapsamlı değerlendirme yapılmalıdır. Değerlendirme, uygun tedavi planının belirlenmesinde oldukça önemlidir. Net bir tedavi planı bulunmamasına rağmen egzersizin etkili olabileceği belirtilmiştir. Yapılan hayvan çalışmalarında, aerobik egzersizin oksidatif kapasitede artma, tümör hacminde ve inflamasyonda azalma ve kas atrofisini önlemeyi sağladığı bulunmuştur. Dirençli egzersizin KK'li bireylerde güvenli ve uygulanabilir olduğu, hareketlilik, kas kuvveti ve yağsız vücut kütlesinde anlamlı artış sağladığı görülmüştür. Hayvan çalışmalarında dirençli egzersizin; inflamasyon ve hiperlipidemide azalma, kilo alımı ve protein sentezinde artma sağladığı bildirilmiştir. Yapılan hayvan çalışmalarında, aerobik ve direçli kombine egzersizin; protein katabolizması ve oksidatif streste azalma, kas kaybını önleme ve kas kütlesinde artma sağladığı belirtilmiştir. Egzersiz, umut verici ve farmakolojik olmayan bir yaklaşımdır ve KK'li bireylerde egzersizin etkilerinin incelendiği çalışmalara ihtiyaç vardır. Bu çalışmada, KK'nin patofizyolojisi, kullanılan değerlendirme yöntemleri ve egzersizin patofizyoloji üzerine etkilerinin derlenmesi amaçlamıştır.
Anahtar Kelimeler: Kanser; kaşeksi; patofizyoloji; egzersiz; egzersiz tedavisi
Cancer cachexia (CC) is characterized by progressive functional deterioration and loss of skeletal muscle mass, which doesn't improve with nutritional support, and is seen at very high rates in advanced cancer patients. It has stages as precachexia, cachexia and refractory cachexia. Systemic inflammation is triggered by proinflammatory cytokines production from tumor cells. The effect of cytokine production spreading to organs causes acute phase response, catabolicanabolic stimulus changes, increased energy expenditure, decreased energy intake, anorexia, insulin resistance, increased oxidative stress, mitochodrial dysfunction, loss of muscle and adipose tissue. Because of the multifactorial pathophysiology in CC, comprehensive evaluation should be performed. Evaluation is significant in determining the appropriate treatment plan. Although there isn't clear treatment plan, exercise can be effective. Animal studies reported that aerobic exercise increases oxidative capacity, reduces tumor volume and inflammation and prevents muscle atrophy. Resistance exercise has been reported to be feasible and safe in individuals with CC, provides significant improvements in mobility, muscle strength and lean body mass. Animal studies, reported that resistance exercise reduces inflammation and hyperlipidemia, increases weight and protein synthesis. Animal studies, stated that aerobic and resistance combined exercise is effective in reducing protein catabolism and oxidative stress, preventing muscle loss and improving muscle mass. Exercise is a promising non-pharmacological approach and exercise studies are needed for CC in adults. This study aimed to review the pathophysiology, evaluation methods and the effects of exercise on the pathophysiology.
Keywords: Cancer; cachexia; pathophysiology; exercise; exercise therapy
- Argilés JM, Busquets S, Stemmler B, López-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14(11):754-62. [Crossref] [PubMed]
- Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J Cachexia Sarcopenia Muscle. 2019;10(1):22-34. [Crossref] [PubMed] [PMC]
- Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489-95. [Crossref] [PubMed]
- Seelaender M, Batista M Jr, Lira F, Silverio R, Rossi-Fanelli F. Inflammation in cancer cachexia: to resolve or not to resolve (is that the question?). Clin Nutr. 2012;31(4):562-6. [Crossref] [PubMed]
- Noguchi Y, Yoshikawa T, Marat D, Doi C, Makino T, Fukuzawa K, et al. Insulin resistance in cancer patients is associated with enhanced tumor necrosis factor-alpha expression in skeletal muscle. Biochem Biophys Res Commun. 1998;253(3):887-92. [Crossref] [PubMed]
- Li YP, Reid MB. NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1165-70. [Crossref] [PubMed]
- Laviano A, Meguid MM, Yang ZJ, Gleason JR, Cangiano C, Rossi Fanelli F. Cracking the riddle of cancer anorexia. Nutrition. 1996;12(10):706-10. [Crossref] [PubMed]
- Bonetto A, Aydogdu T, Kunzevitzky N, Guttridge DC, Khuri S, Koniaris LG, et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One. 2011;6(7):e22538. [Crossref] [PubMed] [PMC]
- Brown JL, Rosa-Caldwell ME, Lee DE, Blackwell TA, Brown LA, Perry RA, et al. Mitochondrial degeneration precedes the development of muscle atrophy in progression of cancer cachexia in tumour-bearing mice. J Cachexia Sarcopenia Muscle. 2017;8(6):926-38. [Crossref] [PubMed] [PMC]
- Tsai VW, Lin S, Brown DA, Salis A, Breit SN. Anorexia-cachexia and obesity treatment may be two sides of the same coin: role of the TGF-b superfamily cytokine MIC-1/GDF15. Int J Obes (Lond). 2016;40(2):193-7. [Crossref] [PubMed]
- Sacheck JM, Ohtsuka A, McLary SC, Goldberg AL. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab. 2004;287(4):E591-601. [Crossref] [PubMed]
- Nicolini A, Ferrari P, Masoni MC, Fini M, Pagani S, Giampietro O, et al. Malnutrition, anorexia and cachexia in cancer patients: a mini-review on pathogenesis and treatment. Biomed Pharmacother. 2013;67(8):807-17. [Crossref] [PubMed]
- Holroyde CP, Gabuzda TG, Putnam RC, Paul P, Reichard GA. Altered glucose metabolism in metastatic carcinoma. Cancer Res. 1975;35(12):3710-4. [PubMed]
- Shellock FG, Riedinger MS, Fishbein MC. Brown adipose tissue in cancer patients: possible cause of cancer-induced cachexia. J Cancer Res Clin Oncol. 1986;111(1):82-5. [Crossref] [PubMed]
- Das SK, Eder S, Schauer S, Diwoky C, Temmel H, Guertl B, et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science. 2011;333(6039):233-8. Erratum in: Science. 2011;333(6049):1576. [Crossref] [PubMed]
- Yeom E, Yu K. Understanding the molecular basis of anorexia and tissue wasting in cancer cachexia. Exp Mol Med. 2022;54(4):426-32. [Crossref] [PubMed] [PMC]
- Acharyya S, Ladner KJ, Nelsen LL, Damrauer J, Reiser PJ, Swoap S, et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest. 2004;114(3):370-8. [Crossref] [PubMed] [PMC]
- Rausch V, Sala V, Penna F, Porporato PE, Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis. 2021;10(1):1. [Crossref] [PubMed] [PMC]
- Gioulbasanis I, Georgoulias P, Vlachostergios PJ, Baracos V, Ghosh S, Giannousi Z, et al. Mini Nutritional Assessment (MNA) and biochemical markers of cachexia in metastatic lung cancer patients: interrelations and associations with prognosis. Lung Cancer. 2011;74(3):516-20. [Crossref] [PubMed]
- Neelemaat F, Meijers J, Kruizenga H, van Ballegooijen H, van Bokhorst-de van der Schueren M. Comparison of five malnutrition screening tools in one hospital inpatient sample. J Clin Nurs. 2011;20(15-16):2144-52. [Crossref] [PubMed]
- Vigano AL, di Tomasso J, Kilgour RD, Trutschnigg B, Lucar E, Morais JA, et al. The abridged patient-generated subjective global assessment is a useful tool for early detection and characterization of cancer cachexia. J Acad Nutr Diet. 2014;114(7):1088-98. [Crossref] [PubMed]
- Thoresen L, Frykholm G, Lydersen S, Ulveland H, Baracos V, Prado CM, et al. Nutritional status, cachexia and survival in patients with advanced colorectal carcinoma. Different assessment criteria for nutritional status provide unequal results. Clin Nutr. 2013;32(1):65-72. [Crossref] [PubMed]
- Ellegård LH, Ahlén M, Körner U, Lundholm KG, Plank LD, Bosaeus IG. Bioelectric impedance spectroscopy underestimates fat-free mass compared to dual energy X-ray absorptiometry in incurable cancer patients. Eur J Clin Nutr. 2009;63(6):794-801. [Crossref] [PubMed]
- Dolan RD, Daly L, Sim WMJ, Fallon M, Ryan A, McMillan DC, et al. Comparison of the prognostic value of ECOG-PS, mGPS and BMI/WL: Implications for a clinically important framework in the assessment and treatment of advanced cancer. Clin Nutr. 2020;39(9):2889-95. [Crossref] [PubMed]
- Barker T, Fulde G, Moulton B, Nadauld LD, Rhodes T. An elevated neutrophil-to-lymphocyte ratio associates with weight loss and cachexia in cancer. Sci Rep. 2020;10(1):7535. [Crossref] [PubMed] [PMC]
- Nozoe T, Ninomiya M, Maeda T, Matsukuma A, Nakashima H, Ezaki T. Prognostic nutritional index: a tool to predict the biological aggressiveness of gastric carcinoma. Surg Today. 2010;40(5):440-3. [Crossref] [PubMed]
- Blauwhoff-Buskermolen S, Ruijgrok C, Ostelo RW, de Vet HCW, Verheul HMW, de van der Schueren MAE, et al. The assessment of anorexia in patients with cancer: cut-off values for the FAACT-A/CS and the VAS for appetite. Support Care Cancer. 2016;24(2):661-6. [Crossref] [PubMed] [PMC]
- Amano K, Morita T, Koshimoto S, Uno T, Katayama H, Tatara R. Eating-related distress in advanced cancer patients with cachexia and family members: a survey in palliative and supportive care settings. Support Care Cancer. 2019;27(8):2869-76. [Crossref] [PubMed]
- Miller J, Wells L, Nwulu U, Currow D, Johnson MJ, Skipworth RJE. Validated screening tools for the assessment of cachexia, sarcopenia, and malnutrition: a systematic review. Am J Clin Nutr. 2018;108(6):1196-208. [Crossref] [PubMed]
- Stout NL, Santa Mina D, Lyons KD, Robb K, Silver JK. A systematic review of rehabilitation and exercise recommendations in oncology guidelines. CA Cancer J Clin. 2021;71(2):149-75. [Crossref] [PubMed] [PMC]
- Morishita S, Hamaue Y, Fukushima T, Tanaka T, Fu JB, Nakano J. Effect of exercise on mortality and recurrence in patients with cancer: a systematic review and meta-analysis. Integr Cancer Ther. 2020;19:1534735420917462. [Crossref] [PubMed] [PMC]
- Daou HN. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation. Am J Physiol Regul Integr Comp Physiol. 2020;318(2):R296-310. [Crossref] [PubMed]
- Ballarò R, Penna F, Pin F, Gómez-Cabrera MC, Vi-a J, Costelli P. Moderate exercise improves experimental cancer cachexia by modulating the redox homeostasis. Cancers (Basel). 2019;11(3):285. [Crossref] [PubMed] [PMC]
- Tanaka M, Sugimoto K, Fujimoto T, Xie K, Takahashi T, Akasaka H, et al. Preventive effects of low-intensity exercise on cancer cachexia-induced muscle atrophy. FASEB J. 2019;33(7):7852-62. [Crossref] [PubMed]
- Olesen J, Kiilerich K, Pilegaard H. PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 2010;460(1):153-62. [Crossref] [PubMed]
- Grande AJ, Silva V, Sawaris Neto L, Teixeira Basmage JP, Peccin MS, Maddocks M. Exercise for cancer cachexia in adults. Cochrane Database Syst Rev. 2021;3(3):CD010804. [Crossref] [PubMed] [PMC]
- Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607-15. [Crossref] [PubMed]
- de Sousa CV, Sales MM, Rosa TS, Lewis JE, de Andrade RV, Simões HG. The antioxidant effect of exercise: a systematic review and meta-analysis. Sports Med. 2017;47(2):277-93. [Crossref] [PubMed]
- Sato S, Gao S, Puppa MJ, Kostek MC, Wilson LB, Carson JA. High-frequency stimulation on skeletal muscle maintenance in female cachectic mice. Med Sci Sports Exerc. 2019;51(9):1828-37. [Crossref] [PubMed] [PMC]
- Gould DW, Lahart I, Carmichael AR, Koutedakis Y, Metsios GS. Cancer cachexia prevention via physical exercise: molecular mechanisms. J Cachexia Sarcopenia Muscle. 2013;4(2):111-24. [Crossref] [PubMed] [PMC]
- Gholamian S, Attarzadeh Hosseini SR, Rashidlamir A, Aghaalinejad H. The effects of interval aerobic training on mesenchymal biomarker gene expression, the rate of tumor volume, and cachexia in mice with breast cancer. Iran J Basic Med Sci. 2020;23(2):244-50. [PubMed] [PMC]
- Puppa MJ, White JP, Velázquez KT, Baltgalvis KA, Sato S, Baynes JW, et al. The effect of exercise on IL-6-induced cachexia in the Apc ( Min/+) mouse. J Cachexia Sarcopenia Muscle. 2012;3(2):117-37. [Crossref] [PubMed] [PMC]
- Lira FS, Yamashita AS, Rosa JC, Koyama CH, Caperuto EC, Batista ML Jr, et al. Exercise training decreases adipose tissue inflammation in cachectic rats. Horm Metab Res. 2012;44(2):91-8. [Crossref] [PubMed]
- Grote M, Maihöfer C, Weigl M, Davies-Knorr P, Belka C. Progressive resistance training in cachectic head and neck cancer patients undergoing radiotherapy: a randomized controlled pilot feasibility trial. Radiat Oncol. 2018;13(1):215. [Crossref] [PubMed] [PMC]
- Kamel FH, Basha MA, Alsharidah AS, Salama AB. Resistance training impact on mobility, muscle strength and lean mass in pancreatic cancer cachexia: a randomized controlled trial. Clin Rehabil. 2020;34(11):1391-9. [Crossref] [PubMed]
- Galvão DA, Taaffe DR, Spry N, Joseph D, Newton RU. Combined resistance and aerobic exercise program reverses muscle loss in men undergoing androgen suppression therapy for prostate cancer without bone metastases: a randomized controlled trial. J Clin Oncol. 2010;28(2):340-7. [Crossref] [PubMed]
- Repka CP, Hayward R. Oxidative stress and fitness changes in cancer patients after exercise training. Med Sci Sports Exerc. 2016;48(4):607-14. [Crossref] [PubMed] [PMC]
- Ranjbar K, Ballarò R, Bover Q, Pin F, Beltrà M, Penna F, et al. Combined exercise training positively affects muscle wasting in tumor-bearing mice. Med Sci Sports Exerc. 2019;51(7):1387-95. [Crossref] [PubMed]
- Niels T, Tomanek A, Schneider L, Hasan I, Hallek M, Baumann F. Exercise improves patient outcomes in advanced pancreatic cancer patient during medical treatment. Pancreat Disord Ther. 2018;8(1). [Crossref]
- Karlsen T, Aamot IL, Haykowsky M, Rognmo Ø. High intensity interval training for maximizing health outcomes. Prog Cardiovasc Dis. 2017;60(1):67-77. [Crossref] [PubMed]
.: Process List