Objective: The aim of the present study is to investigate the effects of different peri-implant bone defects on primary stability and the correlation between insertion torque (IT) and resonance frequency analysis (RFA) measurements. Material and Methods: Fourty implant beds were prepared in artificial bone blocks using the 3D surgical guide. Implant osteotomies were divided into 5 groups (n=8) according to defect type: i) no peri-implant bone defect (control), ii) a dehiscence defect, iii) a fenestration defect on the middle part, iv) a fenestration defect on the apical part and v) a circumferential defect. Implants were inserted by using a surgical drilling unit with torque control and RFA measurement were done. Results: IT values for the control group were significantly higher than the other groups (p<0.001). The results of IT measurements for dehiscence defect group were significantly greater when compared to fenestration and circular defect groups (p<0.01). Implant stability quotient (ISQ) values for the control group were significantly higher than other groups (p<0.05). In addition, the ISQ values for the dehiscence defect group were significantly lower when compared to fenestration defect groups (p<0.001), and ISQ values for the circular defect group were significantly lower than any other groups (p<0.001). IT values and, ISQ values are moderately correlated (p=0.013, r=0.388). Conclusion: The location of peri-implant bone defect affects RFA measurements more than IT. However, IT seems to be correlated with bone implant contact. Therefore, in the case of peri-implant bone defect, IT measurement may be preferred for evaluation of primary stability.
Keywords: Resonance frequency analysis; dental implants
Amaç: Bu çalışmanın amacı, farklı tipteki peri-implant kemik defektlerinin primer stabilite üzerindeki etkilerinin ve implantların yerleştirme torku (YT) ölçümleri ile rezonans frekans analizi (RFA) ölçümleri arasındaki korelasyonu incelemektir. Gereç ve Yöntemler: 3 boyutlu cerrahi kılavuz kullanılarak yapay kemik bloklarının içerisine 40 adet implant boşluğu hazırlandı. Farklı tipte peri-implant defektler oluşturulduktan sonra implant boşlukları defekt tipine göre 5 gruba (n=8) ayrıldı: i) implant çevresinde kemik defekti yok (kontrol), ii) dehisens defekti, iii) implantın orta kısımda fenestrasyon defekti, iv) implantın apikal kısmında fenestrasyon defekti ve v) sirküler kemik defekti. İmplantlar tork kontrollü cerrahi motor kullanılarak yerleştirildi ve RFA ölçümleri yapıldı. Bulgular: Kontrol grubunda ölçülen YT değerleri diğer gruplara göre istatistiksel anlamlı olarak daha yüksekti (p<0,001). Dehisens tipi defektleri olan grupların YT ölçümlerinin sonuçları, fenestrasyon ve sirküler kemik defekti grupları ile karşılaştırıldığında istatistiksel anlamlı olarak daha yüksekti (p<0,01). Kontrol grubu için implant stabilite katsayısı [implant stability quotient (ISQ)] değerleri diğer gruplara göre istatistiksel anlamlı olarak yüksekti (p<0,05). Ayrıca dehisens tipi defekt grubu için ISQ değerleri, fenestrasyon tipi defekti olan gruplar ile karşılaştırıldığında anlamlı derecede daha düşüktü (p<0,001). Bunun yanında sirküler kemik defekti grubu için ISQ değerleri diğer gruplara göre anlamlı derecede daha düşüktü (p<0,001). YT değerleri ile ISQ değerlerinin orta düzeyde korelasyon gösterdiği tespit edilmiştir (p=0,013, r=0,388). Sonuç: Periimplant kemik defektinin lokalizasyonu, RFA ölçümlerini YT ölçümlerinden daha fazla etkilemektedir. Bununla birlikte YT'nin kemik implant teması ile daha güçlü bir ilişkisi olduğu görülmektedir. Bu nedenle peri-implant kemik defekti varlığında, primer stabilitenin değerlendirilmesi için YT ölçümü tercih edilebilir.
Anahtar Kelimeler: Rezonans frekans analizi; diş implantları
- De Bruyn H, Raes S, Ostman PO, Cosyn J. Immediate loading in partially and completely edentulous jaws: a review of the literature with clinical guidelines. Periodontol 2000. 2014;66(1):153-87. [Crossref] [PubMed]
- Cobo-Vázquez C, Reininger D, Molinero-Mourelle P, González-Serrano J, Guisado-Moya B, López-Quiles J. Effect of the lack of primary stability in the survival of dental implants. J Clin Exp Dent. 2018;10(1):e14-e9. [PubMed] [PMC]
- Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998;43(2):192-203. [Crossref] [PubMed]
- Rues S, Schmitter M, Kappel S, Sonntag R, Kretzer JP, Nadorf J. Effect of bone quality and quantity on the primary stability of dental implants in a simulated bicortical placement. Clin Oral Investig. 2021;25(3):1265-72. [Crossref] [PubMed] [PMC]
- Lombardi T, Bernardello F, Berton F, Porrelli D, Rapani A, Camurri Piloni A, et al. Efficacy of alveolar ridge preservation after maxillary molar extraction in reducing crestal bone resorption and sinus pneumatization: a multicenter prospective case-control study. Biomed Res Int. 2018;2018:9352130. [Crossref] [PubMed] [PMC]
- Mercan U, Bilhan H, Meral DG, Kazokoglu S, Aykol-Sahin G, Geckili O. Influence of the localization of frontal bone defects on primary stability values of 2 different implant designs: an in vitro study. Implant Dent. 2017;26(1):87-94. [Crossref] [PubMed]
- de Araújo Nobre M, Lopes A, Antunes E. The 10 year outcomes of implants inserted with dehiscence or fenestrations in the rehabilitation of completely edentulous jaws with the all-on-4 concept. J Clin Med. 2022;11(7):1939. [Crossref] [PubMed] [PMC]
- Turkyilmaz I, Sennerby L, Yilmaz B, Bilecenoglu B, Ozbek EN. Influence of defect depth on resonance frequency analysis and insertion torque values for implants placed in fresh extraction sockets: a human cadaver study. Clin Implant Dent Relat Res. 2009;11(1):52-8. [Crossref] [PubMed]
- Atsumi M, Park SH, Wang HL. Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants. 2007;22(5):743-54. [PubMed]
- Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010;38(8):612-20. [Crossref] [PubMed]
- Shokri M, Daraeighadikolaei A. Measurement of primary and secondary stability of dental implants by resonance frequency analysis method in mandible. Int J Dent. 2013;2013:506968. [Crossref] [PubMed] [PMC]
- Baldi D, Lombardi T, Colombo J, Cervino G, Perinetti G, Di Lenarda R, et al. Correlation between insertion torque and implant stability quotient in tapered implants with knife-edge thread design. Biomed Res Int. 2018;2018:7201093. [Crossref] [PubMed] [PMC]
- Kuchler U, Chappuis V, Bornstein MM, Siewczyk M, Gruber R, Maestre L, et al. Development of implant stability quotient values of implants placed with simultaneous sinus floor elevation - results of a prospective study with 109 implants. Clin Oral Implants Res. 2017;28(1):109-15. [Crossref] [PubMed]
- Trisi P, Berardi D, Paolantonio M, Spoto G, D'Addona A, Perfetti G. Primary stability, insertion torque, and bone density of conical implants with internal hexagon: is there a relationship? J Craniofac Surg. 2013;24(3):841-4. [Crossref] [PubMed]
- Lages FS, Douglas-de Oliveira DW, Costa FO. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: a systematic review. Clin Implant Dent Relat Res. 2018;20(1):26-33. [Crossref] [PubMed]
- Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res. 1996;7(3):261-7. [Crossref] [PubMed]
- Satwalekar P, Nalla S, Reddy R, Chowdary SG. Clinical evaluation of osseointegration using resonance frequency analysis. J Indian Prosthodont Soc. 2015;15(3):192-9. [Crossref] [PubMed] [PMC]
- Akça K, Kökat AM, Cömert A, Akkocaoğlu M, Tekdemir I, Cehreli MC. Torque-fitting and resonance frequency analyses of implants in conventional sockets versus controlled bone defects in vitro. Int J Oral Maxillofac Surg. 2010;39(2):169-73. [Crossref] [PubMed]
- Shin SY, Shin SI, Kye SB, Chang SW, Hong J, Paeng JY, et al. Bone cement grafting increases implant primary stability in circumferential cortical bone defects. J Periodontal Implant Sci. 2015;45(1):30-5. [Crossref] [PubMed] [PMC]
- Shin SY, Shin SI, Kye SB, Hong J, Paeng JY, Chang SW, et al. The effects of defect type and depth, and measurement direction on the implant stability quotient value. J Oral Implantol. 2015;41(6):652-6. [Crossref] [PubMed]
- Akkocaoglu M, Uysal S, Tekdemir I, Akca K, Cehreli MC. Implant design and intraosseous stability of immediately placed implants: a human cadaver study. Clin Oral Implants Res. 2005;16(2):202-9. [Crossref] [PubMed]
- Venkatakrishnan CJ, Bhuminathan S, Chandran CAR. Dental implant insertion torque and bone density-short review. Biomed Pharmacol J. 2017;10(3):1305-9. [Crossref]
- Degidi M, Perrotti V, Strocchi R, Piattelli A, Iezzi G. Is insertion torque correlated to bone-implant contact percentage in the early healing period? A histological and histomorphometrical evaluation of 17 human-retrieved dental implants. Clin Oral Implants Res. 2009;20(8):778-81. [Crossref] [PubMed]
- Liu C, Tsai MT, Huang HL, Chen MY, Hsu JT, Su KC, et al. Relation between insertion torque and bone-implant contact percentage: an artificial bone study. Clin Oral Investig. 2012;16(6):1679-84. [Crossref] [PubMed]
- Ramakrishna R, Nayar S. Clinical assessment of primary stability of endosseous implants placed in the incisor region, using resonance frequency analysis methodology: an in vivo study. Indian J Dent Res. 2007;18(4):168-72. [Crossref] [PubMed]
- Park JH, Lim YJ, Kim MJ, Kwon HB. The effect of various thread designs on the initial stability of taper implants. J Adv Prosthodont. 2009;1(1):19-25. [Crossref] [PubMed] [PMC]
- Turkyilmaz I, Sennerby L, McGlumphy EA, Tözüm TF. Biomechanical aspects of primary implant stability: a human cadaver study. Clin Implant Dent Relat Res. 2009;11(2):113-9. [Crossref] [PubMed]
- Kahraman S, Bal BT, Asar NV, Turkyilmaz I, Tözüm TF. Clinical study on the insertion torque and wireless resonance frequency analysis in the assessment of torque capacity and stability of self-tapping dental implants. J Oral Rehabil. 2009;36(10):755-61. [Crossref] [PubMed]
- Levin BP. The correlation between immediate implant insertion torque and implant stability quotient. Int J Periodontics Restorative Dent. 2016;36(6):833-40. [Crossref] [PubMed]
- Nkenke E, Hahn M, Weinzierl K, Radespiel-Tröger M, Neukam FW, Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res. 2003;14(5):601-9. [Crossref] [PubMed]
- Abrahamsson I, Linder E, Lang NP. Implant stability in relation to osseointegration: an experimental study in the Labrador dog. Clin Oral Implants Res. 2009;20(3):313-8. [Crossref] [PubMed]
- Capparé P, Vinci R, Di Stefano DA, Traini T, Pantaleo G, Gherlone EF, et al. Correlation between Initial BIC and the insertion torque/depth integral recorded with an instantaneous torque-measuring implant motor: an in vivo study. Clin Implant Dent Relat Res. 2015;17 Suppl 2:e613-20. [Crossref] [PubMed]
.: Process List