İmplantasyon süreci, menstrual siklusun 20-24. günleri arasında blastokist ile endometriyumun karşılıklı etkileşimini içerir. Bu süreçte blastokist endometriyum yüzeyine yaklaşır, sıkıca bağlanır ve endometriyuma invaze olur. Başarılı implantasyon için; üç önemli bileşen varlığı gereklidir. Birincisi; moleküler olarak programlanmış hücre büyümesi ve differansiyasyona sahip kaliteli embriyo, ikincisi; implantasyona izin veren değişkenlik potansiyeline sahip endometriyum (endometrial reseptivite) ve üçüncüsü; cross-talk diye adlandırılan embriyo ile endometriyum arasındaki bilgi alışverişidir. Bu etkileşime, hormonlar, sitokinler, prostaglandinler ve adezyon molekülleri dâhil olmak üzere birçok faktör aracılık eder. Bu faktörlerden bir veya birkaçının eksikliği implantasyonun gerçekleşmemesine dolayısıyla infertiliteye sebep olur. Bu nedenle implantasyon sürecinde yer alan moleküler yolakları iyi bilmek, yardımcı üreme tedavilerine başvuran hastalar için etyolojinin araştırılmasına ve tedavi sürecine katkı sağlamaktadır. Bu derlemede; güncel bir yaklaşım olarak
implantasyonun üç önemli komponenti olan embriyo, endometriyumun farklanması ve cross-talk olaylarındaki moleküler yolaklar ayrıntılandırılmıştır.
Anahtar Kelimeler: Blastokist; implantasyon; VEGF; MUC-1; HB-EGF; MMP-9; endometriyum
The implantation process involves mutual interaction between the blastocyst and the endometrium, which should result in a short window period. In this process, the blastocyst approaches to the surface of the endometrium, tightly connects and invades the endometrium. For successful implantation; three important components are required. First; a good quality of embryo who is programmed and has got cell growth and differentiation, the second; endometrium (endometrial receptivity) has potential for variability that allows implantation and the third; it is the exchange of information between the endometrium and the embryo, called cross-talk. Several factors, including hormones, cytokines, prostaglandins and adhesion molecules, are involved in this interaction. The lack of one or more of these factors leads to the implantation failure and thus to infertility. Therefore, knowing the molecular pathways involved in the implantation process will contribute to the research of the etiology and the treatment process for those applying for assisted reproductive techniques. In this review; the molecular pathways in the differentiation of embryo and endometrium and cross-talk in the implantation process will be elaborated.
Keywords: Blastocyst; implantation; VEGF; MUC-1; HB-EGF; MMP-9; endometrium
- Sengupta J, Ghosh D. Multi-level and multiscale integrative approach to the understanding of human blastocyst implantation. Prog Biophys Mol Biol. 2014;114(1):49-60. [Crossref] [PubMed]
- Matsumoto H, Fukui E, Yoshizawa M. Molecular and cellular events involved in the completion of blastocyst implantation. Reprod Med Biol. 2016;15(2):53-8. [Crossref] [PubMed] [PMC]
- Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, et al. Physiological and molecular determinants of embryo implantation. Mol Aspects Med. 2013;34(5):939-80. [Crossref] [PubMed] [PMC]
- Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev. 2017;63(5):445-54. [Crossref] [PubMed] [PMC]
- Moore Keith L. The Developing Human: Clinically Oriented Embryology. 10th ed. Philadelphia, PA: Elsevier Health Sciences; 2015. p.560.
- Wamaitha SE, Niakan KK. Human pre-gastrulation development. Curr Top Dev Biol. 2018;128:295-338. [Crossref] [PubMed]
- Bessonnard S, Mesnard D, Constam DB. PC7 and the related proteases Furin and Pace4 regulate E-cadherin function during blastocyst formation. J Cell Biol. 2015;210(7):1185-97.[Crossref] [PubMed] [PMC]
- Fierro-González JC, White MD, Silva JC, Plachta N. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol. 2013;15(12):1424-33. [Crossref] [PubMed]
- White MD, Bissiere S, Alvarez YD, Plachta N. Mouse embryo compaction. Curr Top Dev Biol. 2016;120:235-58. [Crossref] [PubMed]
- Samarage CR, White MD, Álvarez YD, FierroGonzález JC, Henon Y, Jesudason EC, et al. Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell. 2015;34(4):435-47. [Crossref] [PubMed]
- Saini D, Yamanaka Y. Cell polarity-dependent regulation of cell allocation and the first lineage specification in the preimplantation mouse embryo. Curr Top Dev Biol. 2018;128:11-35.[Crossref] [PubMed]
- Shin H, Bang S, Kim J, Jun JH, Song H, Lim HJ. The formation of multivesicular bodies in activated blastocysts is influenced by autophagy and FGF signaling in mice. Sci Rep. 2017;7:41986. [Crossref] [PubMed] [PMC]
- Fu Z, Wang B, Wang S, Wu W, Wang Q, Chen Y, et al. Integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. Biol Reprod. 2014;90(3):52. [Crossref] [PubMed]
- Saito K, Furukawa E, Kobayashi M, Fukui E, Yoshizawa M, Matsumoto H. Degradation of estrogen receptor α in activated blastocysts is associated with implantation in the delayed implantation mouse model. MHR: Basic Science of Reproductive Medicine. 2014;20(5):384-91.[Crossref] [PubMed]
- Waclawik A, Kaczmarek MM, Blitek A Kaczynski P, Ziecik AJ. Embryo‐ maternal dialogue during pregnancy establishment and implantation in the pig. Mol Reprod Dev. 2017;84(9):842-55. [Crossref] [PubMed]
- Correa F, Wolfson ML, Valchi P, Aisemberg J, Franchi AM. Endocannabinoid system and pregnancy. Reproduction. 2016;152(6):R191R200. [Crossref] [PubMed]
- Zhang Q, Yan J. Update of Wnt signaling in implantation and decidualization. Reprod Med Biol. 2016;15(2):95-105. [Crossref] [PubMed] [PMC]
- Jessmon P, Leach RE, Armant DR. Diverse functions of HBEGF during pregnancy. Mol Reprod Dev. 2009;76(12):1116-27. [Crossref] [PubMed] [PMC]
- Tu Z, Wang Q, Cui T, Wang J, Ran H, Bao H, et al. Uterine RAC1 via Pak1-ERM signaling directs normal luminal epithelial integrity conducive to on-time embryo implantation in mice. Cell Death Differ. 2016;23(1):169-81.[Crossref] [PubMed] [PMC]
- Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. Birth Defects Res C Embryo Today. 2016;108(1):19-32. [Crossref] [PubMed]
- Poon CE, Madawala RJ, Dowland SN, Murphy CR. Nectin-3 is increased in the cell junctions of the uterine epithelium at ımplantation. Reprod Sci. 2016;23(11):1580-92. [Crossref][PubMed]
- Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. Int J Dev Biol. 2014;58(2-4):139-46. [Crossref] [PubMed] [PMC]
- Sadler TW. Langman?s Medical Embryology. 13th ed. Philadelphia: Lippincott Williams & Wilkins; 2017. p.424.
- Makieva S, Giacomini E, Ottolina J, Sanchez AM, Papaleo E, Viganò P. Inside the endometrial cell signaling subway: mind the Gap(s). Int J Mol Sci. 2018;19(9). [Crossref] [PubMed] [PMC]
- da Costa e Silva Rde C, Moura KK, Ribeiro Júnior CL, Guillo LA. Estrogen signaling in the proliferative endometrium: implications in endometriosis. Rev Assoc Med Bras (1992). 2016;62(1):72-7. [Crossref] [PubMed]
- Herington JL, Guo Y, Reese J, Paria BC. Gene profiling the window of implantation: microarray analyses from human and rodent models. J Reprod Health Med. 2016;2(Suppl 2):S19-S25. [Crossref] [PubMed] [PMC]
- Tu Z, Ran H, Zhang S, Xia G, Wang B, Wang H. Molecular determinants of uterine receptivity. Int J Dev Biol. 2014;58(2-4):147-54.[Crossref] [PubMed]
- Egashira M, Hirota Y. Uterine receptivity and embryo-uterine interactions in embryo implantation: lessons from mice. Reprod Med Biol. 2013;12(4):127-32. [Crossref] [PubMed] [PMC]
- Qiong Z, Jie H, Yonggang W, Bin X, Jing Z, Yanping L. Clinical validation of pinopode as a marker of endometrial receptivity: a randomized controlled trial. Fertil Steril. 2017; 108(3):513-7.e2. [Crossref] [PubMed]
- Mokhtar HM, Giribabu N, Muniandy S, Salleh N. Testosterone decreases the expression of endometrial pinopode and l-selectin ligand (MECA-79) in adult female rats during uterine receptivity period. Int J Clin Exp Pathol. 2014;7(5):1967-76.
- Li F, Zhang M, Zhang Y, Liu T, Qu X. GnRH analogues may increase endometrial Hoxa10 promoter methylation and affect endometrial receptivity. Mol Med Rep. 2015;11(1):509-14.[Crossref] [PubMed]
- von Grothusen C, Lalitkumar S, Boggavarapu NR, Gemzell-Danielsson K, Lalitkumar PG. Recent advances in understanding endometrial receptivity: molecular basis and clinical applications. Am J Reprod Immunol. 2014;72(2):148-57. [Crossref] [PubMed]
- Miravet-Valenciano JA, Rincon-Bertolin A, Vilella F, Simon C. Understanding and improving endometrial receptivity. Curr Opin Obstet Gynecol. 2015;27(3):187-92. [Crossref] [PubMed]
- Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006;12(6): 731-46. [Crossref] [PubMed]
- Paria BC, Song H, Dey SK. Implantation: molecular basis of embryo-uterine dialogue. Int J Dev Biol. 2001;45(3):597-605.
- Yuan J, Deng W, Cha J, Sun X, Borg JP, Dey SK. Tridimensional visualization reveals direct communication between the embryo and glands critical for implantation. Nat Commun. 2018;9(1):603. [Crossref] [PubMed] [PMC]
- Zhao LH, Cui XZ, Yuan HJ, Liang B, Zheng LL, Liu YX, et al. Restraint stress inhibits mouse implantation: temporal window and the involvement of HB-EGF, estrogen and progesterone. PLoS One. 2013;8(11): e80472.[Crossref] [PubMed] [PMC]
- Robertson SA, Chin PY, Schjenken JE, Thompson JG. Female tract cytokines and developmental programming in embryos. Adv Exp Med Biol. 2015;843:173-213. [Crossref] [PubMed]
- Binder NK, Evans J, Gardner DK, Salamonsen LA, Hannan NJ. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice. Hum Reprod. 2014;29(10):2278-86.[Crossref] [PubMed]
- Inyawilert W, Fu TY, Lin CT, Tang PC. MicroRNA-199a mediates mucin 1 expression in mouse uterus during implantation. Reprod Fertil Dev. 2014;26(5):653-64. [Crossref] [PubMed]
- Inyawilert W, Fu TY, Lin CT, Tang PC. Let-7mediated suppression of mucin1 expression in the mouse uterus during embryo implantation. J Reprod Dev. 2015;61(2):138-44.[Crossref] [PubMed] [PMC]
- Bastu E, Mutlu MF, Yasa C, Dural O, Nehir Aytan A, Celik C, et al. Role of mucin 1 and glycodelin A in recurrent implantation failure. Fertil Steril. 2015;103(4):1059-64.e2. [Crossref] [PubMed]
- Kang YJ, Forbes K, Carver J, Aplin JD. The role of the osteopontin-integrin α vβ3 interaction at implantation: functional analysis using three different in vitro models. Hum Reprod. 2014;29(4):739-49. [Crossref] [PubMed]
- Chen J, Khalil RA. Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. 2017;148: 87-165. [Crossref] [PubMed] [PMC]
- Bałkowiec M, Maksym RB, Włodarski PK. The bimodal role of matrix metalloproteinases and their inhibitors in etiology and pathogenesis of endometriosis (Review). Mol Med Rep. 2018;18(3):3123-36. [Crossref] [PubMed] [PMC]
- Thouas GA, Dominguez F, Green MP, Vilella F, Simon C, Gardner DK. Soluble ligands and their receptors in human embryo development and implantation. Endocr Rev. 2015;36(1):92-130. [Crossref] [PubMed]
.: Process List