Amaç: Huntington hastalığı (HH), otozomal dominant genetik geçiş özelliği gösteren, motor, psikiyatrik ve bilişsel içerikli klinik bulgularla karakterize, ilerleyici nörodejeneratif bir hastalıktır. Kromozom 4'ün kısa kolunda lokalize HTT(IT15) GRCh38; Chr4: 3,041,422-3,243,960-ENSG00000197386 geni, huntingtin proteinini kodlar. HH'de, bu gende normalden fazla (normal 9-35) sitozin, adenin, guanin (CAG) tekrar dizisi artışı söz konusudur. Gereç ve Yöntemler: HH'ye sahip 6 farklı aileden 6 hastanın, öncelikle moleküler analiz (üçlü tekrarlı primed polimeraz zincir reaksiyonu) ile kesin tanısı koyuldu. Sonrasında, bu 6 hastanın HTT(IT15) genindeki CAG tekrar sayıları ile hastaların cinsiyeti, hastalığın başlangıç yaşı, tanı koyulma yaşı, hastalığın klinik şiddeti, istemsiz koreik hareket varlığı, duygu-durum ve mental etkilenim varlığı, soy geçmiş özellikleri, öz geçmişlerinde cerrahi operasyon geçirip geçirmedikleri ve nöbet öyküleri araştırıldı. Ayrıca hastaların, detaylı pedigri analizi yapıldı ve hastalığın kalıtım kalıbı, ailede başka etkilenen birey varlığı araştırıldı. Böylece hastalığın penetransı ve genotip-fenotip ilişkisi yorumlandı. Bulgular: Afyonkarahisar'ın farklı bölgelerinden, aralarında akrabalık bulunmayan 6 farklı hastanın HTT(IT15) genindeki CAG tekrar sayıları sırasıyla 45, 37, 40, 37, 40, 47 olarak saptandı. Hastalığın başlangıç yaşları sırasıyla 37, 48, 65, 54, 62, 36 olarak tespit edildi. Tüm hastaların pedigri analizleri yapıldı. Sonuç: HH'de, CAG tekrar sayısı artışı ile hastalığın başlama yaşı arasında ters orantı olmasına karşın çalışmamızda, klinik bulgularla CAG tekrar sayısı arasında ilişki yoktur. Koreik hareketler, demansa kadar varan kognitif bozukluklar, psikiyatrik bulgular, klinik tablonun temel özellikleridir. HH, antisipasyon ve klinik değişkenlik gösterdiği (variable expressivite) görülen bir hastalıktır. Çalışmamızda da bazı hastalarda antisipasyon, bazı hastalarda değişken ekspresyon gözlenmiştir. Antisipasyon ve değişken ekspresivite sık gözlendiği için hastaların mutlaka genel ve detaylı olarak genetik, klinik, radyolojik ve laboratuvar olarak değerlendirilmesi gerekir.
Anahtar Kelimeler: Huntington hastalığı; korea; üçlü tekrar artışı; antisipasyon; değişken ekspresivite; TP-PCR
Objective: Huntington disease (HD) is a progressive neurodegenerative disease which has autosomal recessive inheritance and characterized by motor, psychiatric and cognitive clinical findings. The responsible gene is called HTT(IT15) GRCh38; Chr4: 3,041,422-3,243,960-ENSG00000197386, localized at the short arm of the chromosome 4 and codes the huntingtin protein. In HD, there are more cytosine, adenine, guanine (CAG) repeats than normal in this gene. Material and Methods: Firstly, 6 patients from 6 families that have HD were diagnosed by molecular analysis. Then, we investigated the CAG repeat numbers in the patients' HTT(IT15) genes, their genders, age of onset, age of diagnosis, clinical severity of the disease, presence of involuntary choreic movements, presence of affective and mental changes, family history, surgery and seizure history. Also the patients' detailed pedigree analysis was made. The inheritance pattern of the disease and presence of any other affected family member were investigated. Results: The CAG repeat numbers in HTT(IT15) genes of 6 different unrelated patients from different regions of Afyonkarahisar were detected as 45, 37, 40, 37, 40, 47. The age of onset of the disease was determined as 37, 48, 65, 54, 62, 36, respectively. All patients' pedigree analysis was made and in some patients' families broad affection was detected. Conclusion: Although there is an inverse proportion between CAG repeat number and age of onset in HD, there isn't a correlation between between clinical findings and CAG repeat number. Chore movements, cognitive disorders up to dementia, psychiatric symptoms are the main features of the clinical picture. HH is a disease seen with anticipation and clinical variable expressivity. In our study, anticipation was observed in some patients and variable expression was observed in some patients. Since anticipation and variable expressivity are frequently observed, patients should be evaluated in general and detailed genetic, clinical, radiological and laboratory.
Keywords: Huntington disease; chorea; trinucleotide repeat expansion; anticipation; variable expressivity; TP-PCR
- Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol. 1998;57(5):369-84.[Crossref] [PubMed]
- Craufurd D, Thompson JC, Snowden JS. Behavioral changes in Huntington disease. Neuropsychiatry Neuropsychol Behav Neurol. 2001;14(4):219-26.[PubMed]
- Sugars KL, Rubinsztein DC. Transcriptional abnormalities in Huntington disease. Trends Genet. 2003;19(5):233-8.[Crossref] [PubMed]
- Reiner A, Albin RL, Anderson KD, D'Amato CJ, Penney JB, Young AB. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1988;85(15):5733-7.[Crossref] [PubMed] [PMC]
- Nance MA, Westphal B, Nugent S. Diagnosis of patients presenting to a Huntington disease (HD) clinic without a family history of HD. Neurology. 1996;47(6):1578-80.[Crossref] [PubMed]
- Aylward EH, Sparks BF, Field KM, Yallapragada V, Shpritz BD, Rosenblatt A, et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology. 2004;63(1):66-72.[Crossref] [PubMed]
- Glascoe FP, Byrne KE, Ashford LG, Johnson KL, Chang B, Strickland B. Accuracy of the Denver-II in developmental screening. Pediatrics. 1992;89(6 ):1221-5.[PubMed]
- Dyer RB, McMurray CT. Mutant protein in Huntington disease is resistant to proteolysis in affected brain. Nat Genet. 2001;29(3):270-8.[Crossref] [PubMed]
- Allitto BA, MacDonald ME, Bucan M, Richards J, Romano D, Whaley WL, et al. Increased recombination adjacent to the Huntington disease-linked D4S10 marker. Genomics. 1991;9(1):104-12.[Crossref] [PubMed]
- Daldin M, Fodale V, Cariulo C, Azzollini L, Verani M, Martufi P,et al. Polyglutamine expansion affects huntingtin conformation in multiple Huntington's disease models. Sci Rep. 2017;7(1):5070.[Crossref] [PubMed] [PMC]
- Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677-84.[Crossref] [PubMed]
- Holzmann C, Saecker AM, Epplen JT, Riess O. Avoiding errors in the diagnosis of (CAG)n expansion in the huntingtin gene. J Med Genet. 1997;34(3):264.[Crossref] [PubMed] [PMC]
- Andrew SE, Goldberg YP, Theilmann J, Zeisler J, Hayden MR. A CCG repeat polymorphism adjacent to the CAG repeat in the Huntington disease gene: implications for diagnostic accuracy and predictive testing. Hum Mol Genet. 1994;3(1):65-7.[Crossref] [PubMed]
- Zhao M, Cheah FSH, Chen M, Lee CG, Law HY, Chong SS. Improved high sensitivity screen for Huntington disease using a one-step triplet-primed PCR and melting curve assay. PLoS One. 2017;12(7):e0180984.[Crossref] [PubMed] [PMC]
- Snell RG, MacMillan JC, Cheadle JP, Fenton I, Lazarou LP, Davies P, et al. Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993;4(4):393-7.[Crossref] [PubMed]
- Lee JM, Ramos EM, Lee JH, Gillis T, Mysore JS, Hayden MR, et al; PREDICT-HD study of the Huntington Study Group (HSG), Landwehrmeyer GB; REGISTRY study of the European Huntington's Disease Network, Myers RH; HD-MAPS Study Group, MacDonald ME, Gusella JF; COHORT study of the HSG. CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology. 2012;78(10):690-5.[Crossref] [PubMed] [PMC]
- Stout JC, Paulsen JS, Queller S, Solomon AC, Whitlock KB, Campbell JC, et al. Neurocognitive signs in prodromal Huntington disease. Neuropsychology. 2011;25(1):1-14.[Crossref] [PubMed] [PMC]
- Storey E, Beal MF. Neurochemical substrates of rigidity and chorea in Huntington's disease. Brain. 1993;116(Pt 5):1201-22.[Crossref] [PubMed]
- Turner MA, Moran NF, Kopelman MD. Subcortical dementia. The British Journal of Psychiatry. 2002;180(2):148-51.[Crossref] [PubMed]
.: Process List