Amaç: Hemofili B (HB), yaklaşık 30.000 canlı erkek doğumda bir görülen, X'e bağlı kalıtsal kanama bozukluğudur. Klinik bulgular, koagülasyon faktörü 9'un aktivite düzeyine göre değişkenlik gösterir. Bugüne kadar koagülasyon faktörü 9'u kodlayan F9 geninde 1.200'den fazla varyant tanımlanmıştır. Varyantların yaklaşık %70'ini nokta mutasyonları oluşturur. Bu çalışmada, Türkiye'deki HB hastalarında F9 gen varyant dağılımının belirlenmesi ve yeni varyantlar tanımlayarak genotip-fenotip ilişkisine katkıda bulunulması amaçlanmıştır. Gereç ve Yöntemler: Türkiye'deki sekiz farklı merkezde HB tanısı ile takip edilen ve Ege Üniversitesi Tıp Fakültesinde Kasım 2018-Ocak 2020 tarihleri arasında moleküler analizi yapılmış 55 hasta çalışmaya alınmıştır. Olguların klinik ve laboratuvar bulguları hastane kayıtlarından elde edilmiştir. F9 geni dizi analizi, yeni nesil dizi analizi platformu (MiSeq' Illimuna) kullanılarak yapılmıştır. Saptanan yeni varyantların patojeniteleri ACMG 2015 kriterlerine göre sınıflandırılmıştır. Saptanan varyantlar ile fenotip ilişkisi değerlendirilmiştir. Bulgular: Çalışmaya alınan 55 erkek hastanın 33 (%60)'ünde ağır, 15 (%27,3)'inde orta ve 7 (%12,7)'sinde hafif HB fenotipi vardı. F9 dizi analizi sonucunda 54 (%98,2) olguda 46 farklı varyant saptandı. Bu varyantların 30 (%63,8)'u yanlış anlamlı, 9 (%19,1)'u anlamsız, 3 (%6,4)'ü çerçeve kayması ve 4 (%8,5)'ü kırpılma noktası mutasyonuydu. Belirlenen varyantların 10 tanesi daha önce literatürde tanımlanmamıştı. Sonuç: Bu çalışmada, Türkiye'deki HB hastalarında, moleküler analizin tanı başarısı ve F9 geninde varyant dağılımı literatüre benzer şekilde bulunmuştur. Çalışmanın sonuçları, HB'nin genotipik olarak heterojen bir hastalık olduğunu desteklemektedir. On yeni varyant ilk kez bu çalışma ile tanımlanmış ve hastalığın genotip-fenotip ilişkisine katkıda bulunulmuştur.
Anahtar Kelimeler: Yeni nesil dizi analizi; hemofili B; mutasyon; genotip-fenotip ilişkisi
Objective: Hemophilia B (HB) is an X-linked hereditary bleeding disorder seen in approximately one in 30,000 live male births. Clinical findings vary according to the activity level of the coagulation factor 9. More than 1,200 mutations have been identified in the F9 gene to date. Point mutations make up approximately 70% of the mutations. In this study, we aimed to determine the F9 gene mutation spectrum in HB patients in Turkey and to contribute to the genotype-phenotype relationships identifying novel mutations. Material and Methods: Fifty five patients who were followed with a diagnosis of HB in 8 different centers and molecularly analyzed in Ege University Faculty of Medicine in November 2018 and January 2020 enrolled to the study. Clinical and laboratory findings of patients were obtained from hospital records. F9 gene sequence analysis was performed using a next generation sequencing platform (MiSeq' Illimuna) Pathogenicity of novel variants were classified according to ACMG 2015. The correlation between mutation distribution and phenotype was evaluated. Results: Among 55 HB patients enrolled in the study, severe HB phenotype were determined in 33 (60%), moderate in 15 (27.3%) and mild in 7 (12.7%). Molecular analysis was revealed 46 different variants in 54 patients (98.2%) of these variants, 30 were missense (63.8%), nine nonsense (19.1%), three frameshift (6.4%), and four splice site (8.5%) mutations. Ten of 46 variants identified has not previously been reported. In one patient no mutation was dertected by sequencing. Conclusion: In this study, the molecular diagnostic success rate and F9 gene mutation spectrum in Turkish HB patients was in accordance with the literature. The results of the study support that HB is a genotypically heterogeneous disease. Ten novel mutations were identified for the first time with this study and contributed to the genotype-phenotype relationship sof the disease.
Keywords: Next generation sequence analysis; hemophilia B; mutation; genotype-phenotype relation
- Soucie JM, Evatt B, Jackson D. Occurrence of hemophilia in the United States. The Hemophilia Surveillance System Project Investigators. Am J Hematol. 1998;59(4):288-94. [Crossref]
- Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand's disease. Blood. 1987;69(2):454-9. [Crossref] [PubMed]
- Werner EJ, Broxson EH, Tucker EL, Giroux DS, Shults J, Abshire TC. Prevalence of von Willebrand disease in children: a multiethnic study. J Pediatr. 1993;123(6):893-8. [Crossref]
- Bowman M, Hopman WM, Rapson D, Lillicrap D, James P. The prevalence of symptomatic von Willebrand disease in primary care practice. J Thromb Haemost. 2010;8(1):213-6. [Crossref] [PubMed]
- Swystun LL, James PD. Genetic diagnosis in hemophilia and von Willebrand disease. Blood Rev. 2017;31(1):47-56. [Crossref] [PubMed]
- Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. J Thromb Haemost. 2013;11(7):1329-40. [Crossref] [PubMed]
- Perez JB, Coon LM, Majerus JA, Chen D, Pruthi RK. Factor IX Gene (F9) genotyping trends and spectrum of mutations identified: a reference laboratory experience. Semin Thromb Hemost. 2018;44(3):287-92. [Crossref] [PubMed]
- Onay UV, Kavakli K, Kilinc Y, Gurgey A, Aktuglu G, Kemahli S, et al. Molecular pathology of haemophilia B in Turkish patients: identification of a large deletion and 33 independent point mutations. British Journal of Haematology (BJH). 2003;120(4):656-9. [Crossref] [PubMed]
- Çilingir O, Müslümanoğlu MH, Özdemir M, Kavaklı K, Solak M, Artan S. [Factor IX gene mutations in Turkish haemophiliacs]. The Medical Journal of Kocatepe. 2005;6(1):1-6.
- Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-81. [Crossref] [PubMed]
- Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575-6. [Crossref] [PubMed]
- Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-9. [Crossref] [PubMed] [PMC]
- Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20(1):110-21. [Crossref] [PubMed] [PMC]
- Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6(12):e1001025. [Crossref] [PubMed] [PMC]
- Khan MTM, Naz A, Ahmed J, Shamsi T, Ahmed S, Ahmed N, et al. Mutation spectrum and genotype-phenotype analyses in a Pakistani Cohort with Hemophilia B. Clin Appl Thromb Hemost. 2018;24(5):741-8. [Crossref] [PubMed] [PMC]
- Mårtensson A, Letelier A, Halldén C, Ljung R. Mutation analysis of Swedish haemophilia B families-high frequency of unique mutations. Haemophilia. 2016;22(3):440-5. [Crossref] [PubMed]
- Yu T, Dai J, Liu H, Ding Q, Lu Y, Wang H, et al. Spectrum of F9 mutations in Chinese haemophilia B patients: identification of 20 novel mutations. Pathology. 2012;44(4):342-7. [Crossref]
- Rydz N, Leggo J, Tinlin S, James P, Lillicrap D. The Canadian "National Program for hemophilia mutation testing" database: a ten-year review. Am J Hematol. 2013;88(12):1030-4. [Crossref] [PubMed]
- Konkle BA, Huston H, Fletcher SN. Hemophilia B. 2000 Oct 2 [Updated 2017 Jun 15]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, eds. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1495/
- Lu Y, Wu X, Dai J, Ding Q, Wu W, Wang X. The characteristics and spectrum of F9 mutations in Chinese sporadic haemophilia B pedigrees. Haemophilia. 2019;25(2):316-23. [Crossref] [PubMed]
.: Process List