Son yıllarda endodonti alanında çok sayıda olumlu özelliği nedeniyle kalsiyum silikat esaslı materyaller kullanılmaya başlanmıştır. Bağ dokusu ile direkt teması olan materyallerin kullanımı söz konusu olduğunda materyalin biyouyumluluğu o maddede aranan en önemli özelliktir. Ayrıca kullanılan ideal tamir materyali toksik olmamalı, nemli ortamda sertleşebilmeli, kandan etkilenmemeli, bakteri ve doku sıvılarına karşı iyi bir tıkama özelliği olmalı, kalsiyum hidroksit salmalı, kemik oluşumunu indüklemeli, antibakteriyel özelliğe sahip olmalı ve yeterli oranda sertliğe sahip olmalıdır. Kalsiyum silikat esaslı materyallerin içeriğinde trikalsiyum silikat, dikalsiyum silikat gibi hidrofilik bileşikler bulunur. Kalsiyum silikat esaslı materyaller; vital pulpa tedavisinde, apeksifikasyon, perforasyon tamiri, internal rezorbsiyon tedavisi ve kök ucu dolgusu işlemlerinde kullanılmaktadır. Mineral trioxide aggregate (MTA) endodonti alanında kullanılmaya başladığından bu yana oldukça popülerlik kazanmış ve altın standart haline gelmiş kalsiyum silikat esaslı bir dolgu materyalidir. MTA'nın çok sayıdaki avantajına karşın uzun süren sertleşme zamanı, kullanımından sonra nemli pamuk yerleştirilmesi gerekliliği dolayısıyla randevu sayısının artışı, uygulama zorluğu, özellikle ön bölge dişlerde renklenmeye neden olması, bileşiminde toksik elementlerin bulunması, maliyetinin yüksek olması ve sökümünün zor olması gibi dezavantajları vardır. Bu nedenle ideal kök ucu dolgu maddesi arayışı günümüzde halen sürmektedir. Bu materyallerin bir kısmı, MTA'ya alternatif olma hatta MTA'nın yerine geçme potansiyeli taşımaktadır. Bu derlemenin amacı, güncel kalsiyum silikat esaslı materyallerin fizikokimyasal ve biyolojik özellikleri ile ilgili kapsamlı bilgi vermektir.
Anahtar Kelimeler: Endodonti; mineral trioksit agregat; apikoektomi; trikalsiyum silikat
In recent years, calcium silicate-based materials have been widely used in the field of endodontics due to their many favorable properties. When it comes to the use of materials that have direct contact with the connective tissue, the biocompatibility of the material is the most important feature. In addition, the ideal repair material should be non-toxic, harden in a moist environment, not be affected by blood, have good sealing properties against bacteria and tissue fluids, release calcium hydroxide, induce bone formation, have antibacterial properties and have sufficient hardness. Calcium silicate-based materials contains hydrophilic compounds such as tricalcium silicate, dicalcium silicate. Calcium silicate-based materials have been used in vital pulp treatment, apexification, perforation repair, treatment of internal root resorption and root end filling procedures. Mineral trioxide aggregate (MTA) is a calcium silicate based filling material that has gained popularity and has become a gold standard since it started to be used in the field of endodontics. Despite the numerous advantages of MTA, it has disadvantages like long setting time, requiring more than one visit due to the necessity of placing wet cotton pellet on it , difficult handling properties, discoloration effect especially on anterior teeth, the presence of toxic elements in its composition, high cost and difficult to remove. Therefore, the search for the ideal root end filling material is still ongoing today. Some of these materials have the potential to be an alternative to MTA or even to replace MTA. The purpose of this review is to provide comprehensive information about physicochemical and biological properties of current calcium silicate-based materials.
Keywords: Endodontics; mineral trioxide aggregate; apicoectomy; tricalcium silicate
- Hargreaves KM, Berman LH. Cohen's Pathways of the Pulp Expert Consult. 11th ed. St. Louis: Elsevier Health Sci; 2015.
- Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19(12):591-5.[Crossref] [PubMed]
- Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25(3):197-205.[Crossref] [PubMed]
- Lee YL, Lee BS, Lin FH, Yun Lin A, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials. 2004;25(5):787-93.[Crossref] [PubMed]
- Torabinejad M, Pitt Ford TR. Root end filling materials: a review. Endod Dent Traumatol. 1996;12(4):161-78.[Crossref] [PubMed]
- Bortoluzzi EA, Araújo GS, Guerreiro Tanomaru JM, Tanomaru-Filho M. Marginal gingiva discoloration by gray MTA: a case report. J Endod. 2007;33(3):325-7.[Crossref] [PubMed]
- Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. J Endod. 2005;31(2):101-3.[Crossref] [PubMed]
- Song JS, Mante FK, Romanow WJ, Kim S. Chemical analysis of powder and set forms of Portland cement, gray ProRoot MTA, white ProRoot MTA, and gray MTA-Angelus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;102(6):809-15.[Crossref] [PubMed]
- Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16-27.[Crossref] [PubMed]
- Danesh G, Dammaschke T, Gerth HU, Zandbiglari T, Schäfer E. A comparative study of selected properties of ProRoot mineral trioxide aggregate and two Portland cements. Int Endod J. 2006;39(3):213-9.[Crossref] [PubMed]
- Islam I, Chng HK, Yap AU. Comparison of the physical and mechanical properties of MTA and portland cement. J Endod. 2006;32(3):193-7.[Crossref] [PubMed]
- Fridland M, Rosado R. MTA solubility: a long term study. J Endod. 2005;31(5):376-9.[Crossref] [PubMed]
- Gondim E Jr, Kim S, de Souza-Filho FJ. An investigation of microleakage from root-end fillings in ultrasonic retrograde cavities with or without finishing: a quantitative analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(6):755-60.[Crossref] [PubMed]
- Shipper G, Grossman ES, Botha AJ, Cleaton-Jones PE. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study. Int Endod J. 2004;37(5):325-36.[Crossref] [PubMed]
- Rhim EM, Huh SY, Ahn SJ, Abbott PV, Kim EC, Park SH. Comparison of the microhardness and morphology of five different retrograde filling materials in aqueous and dry conditions. Scanning. 2012;34(6):359-66.[Crossref] [PubMed]
- Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST, et al. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J. 2008;41(2):108-16.[PubMed]
- Giuliani V, Nieri M, Pace R, Pagavino G. Effects of pH on surface hardness and microstructure of mineral trioxide aggregate and Aureoseal: an in vitro study. J Endod. 2010;36(11):1883-6.[Crossref] [PubMed]
- Saghiri MA, Lotfi M, Joupari MD, Aeinehchi M, Saghiri AM. Effects of storage temperature on surface hardness, microstructure, and phase formation of white mineral trioxide aggregate. J Endod. 2010;36(8):1414-8.[Crossref] [PubMed]
- Saghiri MA, Asgar K, Lotfi M, Garcia-Godoy F. Nanomodification of mineral trioxide aggregate for enhanced physiochemical properties. Int Endod J. 2012;45(11):979-88.[Crossref] [PubMed]
- Atabek D, Sillelioğlu H, Olmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod. 2012;38(9):1288-92.[Crossref] [PubMed]
- Yesilyurt C, Yildirim T, Taşdemir T, Kusgoz A. Shear bond strength of conventional glass ionomer cements bound to mineral trioxide aggregate. J Endod. 2009;35(10):1381-3.[Crossref] [PubMed]
- Haglund R, He J, Jarvis J, Safavi KE, Spångberg LS, Zhu Q. Effects of root-end filling materials on fibroblasts and macrophages in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95(6):739-45.[Crossref] [PubMed]
- Kettering JD, Torabinejad M. Investigation of mutagenicity of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod. 1995;21(11):537-42.[Crossref] [PubMed]
- Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP. Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. J Endod. 1997;23(4):225-8.[Crossref] [PubMed]
- Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod. 1998;24(7):468-71.[Crossref] [PubMed]
- Menezes R, Bramante CM, Letra A, Carvalho VG, Garcia RB. Histologic evaluation of pulpotomies in dog using two types of mineral trioxide aggregate and regular and white Portland cements as wound dressings. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;98(3):376-9.[Crossref] [PubMed]
- De Deus G, Ximenes R, Gurgel-Filho ED, Plotkowski MC, Coutinho-Filho T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J. 2005;38(9):604-9.[Crossref] [PubMed]
- Koh ET, McDonald F, Pitt Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod. 1998;24(8):543-7.[Crossref] [PubMed]
- Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J Endod. 2003;29(12):826-7.[Crossref] [PubMed]
- Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod. 2004;30(6):429-31.[Crossref] [PubMed]
- Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA. Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. J Endod. 2003;29(5):324-33.[Crossref] [PubMed]
- Santos AD, Araújo EB, Yukimitu K, Barbosa JC, Moraes JC. Setting time and thermal expansion of two endodontic cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):e77-9.[Crossref] [PubMed]
- Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31(9):665-8.[Crossref] [PubMed]
- Komabayashi T, Spångberg LS. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: a study with a flow particle image analyzer. J Endod. 2008;34(1):94-8.[Crossref] [PubMed]
- Oliveira IR, Pandolfelli VC, Jacobovitz M. Chemical, physical and mechanical properties of a novel calcium aluminate endodontic cement. Int Endod J. 2010;43(12):1069-76.[Crossref] [PubMed]
- Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731-6.[Crossref] [PubMed]
- Nekoofar MH, Aseeley Z, Dummer PM. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int Endod J. 2010;43(4):312-20.[Crossref] [PubMed]
- Pereira CL, Cenci MS, Demarco FF. Sealing ability of MTA, Super EBA, Vitremer and amalgam as root-end filling materials. Braz Oral Res. 2004;18(4):317-21.[Crossref] [PubMed]
- Xavier CB, Weismann R, de Oliveira MG, Demarco FF, Pozza DH. Root-end filling materials: apical microleakage and marginal adaptation. J Endod. 2005;31(7):539-42.[Crossref] [PubMed]
- Ribeiro DA, Sugui MM, Matsumoto MA, Duarte MA, Marques ME, Salvadori DM. Genotoxicity and cytotoxicity of mineral trioxide aggregate and regular and white Portland cements on Chinese hamster ovary (CHO) cells in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(2):258-61.[Crossref] [PubMed]
- Koulaouzidou EA, Economides N, Beltes P, Geromichalos G, Papazisis K. In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA Angelus. J Oral Sci. 2008;50(4):397-402.[Crossref] [PubMed]
- Miranda RB, Fidel SR, Boller MA. L929 cell response to root perforation repair cements: an in vitro cytotoxicity assay. Braz Dent J. 2009;20(1):22-6.[Crossref] [PubMed]
- Accorinte ML, Loguercio AD, Reis A, Carneiro E, Grande RH, Murata SS, et al. Response of human dental pulp capped with MTA and calcium hydroxide powder. Oper Dent. 2008;33(5):488-95.[Crossref] [PubMed]
- Gomes-Filho JE, Watanabe S, Bernabé PF, de Moraes Costa MT. A mineral trioxide aggregate sealer stimulated mineralization. J Endod. 2009;35(2):256-60.[Crossref] [PubMed]
- Sipert CR, Hussne RP, Nishiyama CK, Torres SA. In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate, Portland cement and EndoRez. Int Endod J. 2005;38(8):539-43.[Crossref] [PubMed]
- Tanomaru-Filho M, Tanomaru JM, Barros DB, Watanabe E, Ito IY. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement. J Oral Sci. 2007;49(1):41-5.[Crossref] [PubMed]
- Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008;24(11):1486-94.[Crossref] [PubMed]
- Grech L, Mallia B, Camilleri J. Characterization of set Intermediate restorative material, biodentine, bioaggregate and a prototype calcium silicate cement for use as root-end filling materials. Int Endod J. 2013;46(7):632-41.[Crossref] [PubMed]
- Sanghavi T, Shah N, Shah RR. Comparative analysis of sealing ability of biodentin and calcium phosphate cement against mineral trioxide aggregate (Mta) as a furcal perforation repair material (an in vitro study). Natl J Int Res Med. 2013;4(3):56-60.[Link]
- Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J Endod. 2013;39(3):380-4.[Crossref] [PubMed]
- Natale LC, Rodrigues MC, Xavier TA, Simões A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J. 2015;48(1):89-94. Erratum in: Int Endod J. 2015;48(11):1102.[Crossref] [PubMed]
- Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013;46(9):808-14.[Crossref] [PubMed]
- Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29(5):580-93.[Crossref] [PubMed]
- Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J. 2011;44(12):1081-7.[Crossref] [PubMed]
- El-Ma'aita AM, Qualtrough AJ, Watts DC. The effect of smear layer on the push-out bond strength of root canal calcium silicate cements. Dent Mater. 2013;29(7):797-803.[Crossref] [PubMed]
- Leiendecker AP, Qi YP, Sawyer AN, Niu LN, Agee KA, Loushine RJ, et al. Effects of calcium silicate-based materials on collagen matrix integrity of mineralized dentin. J Endod. 2012;38(6):829-33.[Crossref] [PubMed]
- Goldberg M, Pradelle-Plasse N, Tran XV, Colon P, Laurent P, Aubut V, et al. Emerging trends in (bio) material researches. In: Goldberg M, ed. Biocompatibility or Cytotoxic Effects of Dental Composites. 1st ed. Oxford, UK: Coxmoor Publishing; 2009. p.181-203.
- Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod. 2013;39(4):478-83.[Crossref] [PubMed]
- Pérard M, Le Clerc J, Watrin T, Meary F, Pérez F, Tricot-Doleux S, et al. Spheroid model study comparing the biocompatibility of Biodentine and MTA. J Mater Sci Mater Med. 2013;24(6):1527-34. Erratum in: J Mater Sci Mater Med. 2013;24(9):2275.[Crossref] [PubMed]
- Lee BN, Lee KN, Koh JT, Min KS, Chang HS, Hwang IN, et al. Effects of 3 endodontic bioactive cements on osteogenic differentiation in mesenchymal stem cells. J Endod. 2014;40(8):1217-22.[Crossref] [PubMed]
- Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod. 2012;38(9):1220-6.[Crossref] [PubMed]
- Park JW, Hong SH, Kim JH, Lee SJ, Shin SJ. X-Ray diffraction analysis of white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):155-8.[Crossref] [PubMed]
- Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012;45(8):737-43.[Crossref] [PubMed]
- Hashem AA, Wanees Amin SA. The effect of acidity on dislodgment resistance of mineral trioxide aggregate and bioaggregate in furcation perforations: an in vitro comparative study. J Endod. 2012;38(2):245-9.[Crossref] [PubMed]
- Saghiri MA, Garcia-Godoy F, Asatourian A, Lotfi M, Banava S, Khezri-Boukani K. Effect of pH on compressive strength of some modification of mineral trioxide aggregate. Med Oral Patol Oral Cir Bucal. 2013;18(4):e714-20.[Crossref] [PubMed] [PMC]
- Saghiri MA, Nazari A, Garcia-Godoy F, Asatourian A, Malekzadeh M, Elyasi M. Mechanical response of dental cements as determined by nanoindentation and scanning electron microscopy. Microsc Microanal. 2013;19(6):1458-64.[Crossref] [PubMed]
- Saghiri MA, Garcia-Godoy F, Gutmann JL, Lotfi M, Asatourian A, Ahmadi H. Push-out bond strength of a nano-modified mineral trioxide aggregate. Dent Traumatol. 2013;29(4):323-7.[Crossref] [PubMed]
- Çelik D, Er K, Serper A, Taşdemir T, Ceyhanlı KT. Push-out bond strength of three calcium silicate cements to root canal dentine after two different irrigation regimes. Clin Oral Investig. 2014;18(4):1141-6.[Crossref] [PubMed]
- El Sayed M, Saeed M. In vitro comparative study of sealing ability of Diadent BioAggregate and other root-end filling materials. J Conserv Dent. 2012;15(3):249-52.[Crossref] [PubMed] [PMC]
- Yuan Z, Peng B, Jiang H, Bian Z, Yan P. Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod. 2010;36(7):1145-8.[Crossref] [PubMed]
- Saghiri MA, Tanideh N, Garcia-Godoy F, Lotfi M, Karamifar K, Amanat D. Subcutaneous connective tissue reactions to various endodontic biomaterials: an animal study. J Dent Res Dent Clin Dent Prospects. 2013;7(1):15-21.[PubMed] [PMC]
- Batur YB, Acar G, Yalcin Y, Dindar S, Sancakli H, Erdemir U. The cytotoxic evaluation of mineral trioxide aggregate and bioaggregate in the subcutaneous connective tissue of rats. Med Oral Patol Oral Cir Bucal. 2013;18(4):e745-51.[Crossref] [PubMed] [PMC]
- Yan P, Yuan Z, Jiang H, Peng B, Bian Z. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J. 2010;43(12):1116-21.[Crossref] [PubMed]
- Zhang S, Yang X, Fan M. BioAggregate and iRoot BP Plus optimize the proliferation and mineralization ability of human dental pulp cells. Int Endod J. 2013;46(10):923-9.[Crossref] [PubMed]
- Khalil I, Naaman A, Camilleri J. Properties of tricalcium silicate sealers. J Endod. 2016;42(10):1529-35.[Crossref] [PubMed]
- Dohaithem A, Al-Nasser A, Al-Badah A, Al-Nazhan S, Al-Maflehi N. An in vitro evaluation of antifungal activity of bioaggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(4):e27-30.[Crossref] [PubMed]
- Chung CR, Kim E, Shin SJ. Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells. J Kor Acad Cons Dent. 2010;35(6):473-8.[Crossref]
- Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J. 2015;48(4):323-32.[Crossref] [PubMed]
- Damas BA, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of mineral trioxide aggregates and EndoSequence bioceramic root repair materials. J Endod. 2011;37(3):372-5.[Crossref] [PubMed]
- Hirschman WR, Wheater MA, Bringas JS, Hoen MM. Cytotoxicity comparison of three current direct pulp-capping agents with a new bioceramic root repair putty. J Endod. 2012;38(3):385-8.[Crossref] [PubMed]
- Ma J, Shen Y, Stojicic S, Haapasalo M. Biocompatibility of two novel root repair materials. J Endod. 2011;37(6):793-8.[Crossref] [PubMed]
- Modareszadeh MR, Di Fiore PM, Tipton DA, Salamat N. Cytotoxicity and alkaline phosphatase activity evaluation of endosequence root repair material. J Endod. 2012;38(8):1101-5.[Crossref] [PubMed]
- De-Deus G, Canabarro A, Alves GG, Marins JR, Linhares AB, Granjeiro JM. Cytocompatibility of the ready-to-use bioceramic putty repair cement iRoot BP Plus with primary human osteoblasts. Int Endod J. 2012;45(6):508-13.[Crossref] [PubMed]
- Shi S, Bao ZF, Liu Y, Zhang DD, Chen X, Jiang LM, et al. Comparison of in vivo dental pulp responses to capping with iRoot BP Plus and mineral trioxide aggregate. Int Endod J. 2016;49(2):154-60.[Crossref] [PubMed]
- Chen I, Karabucak B, Wang C, Wang HG, Koyama E, Kohli MR, et al. Healing after root-end microsurgery by using mineral trioxide aggregate and a new calcium silicate-based bioceramic material as root-end filling materials in dogs. J Endod. 2015;41(3):389-99.[Crossref] [PubMed] [PMC]
- Lovato KF, Sedgley CM. Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J Endod. 2011;37(11):1542-6.[Crossref] [PubMed]
- Alsalleeh F, Chung N, Stephenson L. Antifungal activity of endosequence root repair material and mineral trioxide aggregate. J Endod. 2014;40(11):1815-9.[Crossref] [PubMed]
- Gandolfi MG, Siboni F, Primus CM, Prati C. Ion release, porosity, solubility, and bioactivity of MTA Plus tricalcium silicate. J Endod. 2014;40(10):1632-7.[Crossref] [PubMed]
- DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. J Endod. 2015;41(3):385-8.[Crossref] [PubMed]
- Walsh RM, Woodmansey KF, Glickman GN, He J. Evaluation of compressive strength of hydraulic silicate-based root-end filling materials. J Endod. 2014;40(7):969-72.[Crossref] [PubMed]
- Eid AA, Gosier JL, Primus CM, Hammond BD, Susin LF, Pashley DH, et al. In vitro biocompatibility and oxidative stress profiles of different hydraulic calcium silicate cements. J Endod. 2014;40(2):255-60.[Crossref] [PubMed] [PMC]
- Kramer PR, Woodmansey KF, White R, Primus CM, Opperman LA. Capping a pulpotomy with calcium aluminosilicate cement: comparison to mineral trioxide aggregates. J Endod. 2014;40(9):1429-34.[Crossref] [PubMed] [PMC]
- Qureshi A, E S, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res. 2014;8(1):316-21.[PubMed] [PMC]
- Yamamoto S, Han L, Noiri Y, Okiji T. Evaluation of the Ca ion release, pH and surface apatite formation of a prototype tricalcium silicate cement. Int Endod J. 2017;50 Suppl 2:e73-e82.[Crossref] [PubMed]
- Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater. 2014;30(7):709-15.[Crossref] [PubMed]
- Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J. 2012;45(6):571-9.[Crossref] [PubMed]
- Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. Solubility and pH of direct pulp capping materials: a comparative study. J Appl Biomater Funct Mater. 2015;13(2):e181-5.[Crossref] [PubMed]
- Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43-60.[Crossref] [PubMed]
- Meraji N, Camilleri J. Bonding over Dentin Replacement Materials. J Endod. 2017;43(8):1343-9.[Crossref] [PubMed]
- Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. ScientificWorldJournal. 2014;2014:181945.[Crossref] [PubMed] [PMC]
- Lee H, Shin Y, Kim SO, Lee HS, Choi HJ, Song JS. Comparative Study of Pulpal Responses to Pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in Dogs' Teeth. J Endod. 2015;41(8):1317-24.[Crossref] [PubMed]
- Petrolo F, Comba A, Scansetti M, Alovisi M, Pasqualini D, Berutti E, et al. Effects of light-cured MTA like material on direct pulp capping. Dent Mater. 2014;30(1):e151.[Crossref]
.: Process List