Objective: In pediatric clinical trials and cohort studies, actual height, weight and head circumference of children at a specific age may be required for certain developmental assessments such as energy expenditure. This necessitates the choice of a growth model with desired characteristics to predict height and weight accurately. Material and Methods: To address this need, we compared Logistic and Gompertz models, which are the two most commonly used growth curve models in child development literature, using different parameterization and in a race and gender specific fashion on actual participant data from the CANDLE study, which is a prospective birth cohort of mother-child dyads in Shelby County, Tennessee, USA. We compared these competitive models and different parameterizations in terms of the size of the residuals as well as prediction standard error, for each anthropometric meas-urement, namely, height, weight, and head circumference. We also assessed the impact of missing data on these models. Results: We have shown that Gompertz model with the first or the second parameter defined with a subject-specific random effect is the best model in terms of prediction accuracy. Although the same Gompertz model fitted on each individual profile without a random effect also has similar prediction accuracy, it has inflated standard error of estimation as expected, thus, not recommended to be used. Conclusion: We conclude that Gompertz model with only the first or the second parameter defined with a random effect performs the best with and without missing data for height, weight, and head circumference growth in the first four years of life.
Keywords: Growth curve; growth models; early child development; first years of life; Gompertz; logistic
Amaç: Klinik denemelerde ve kohort çalışmalarında, çocuk-ların belli yaştaki boy, kilo ve baş çevresi, enerji harcaması gibi belli gelişim değerlendirmeleri için gerekebilir. Bu durum, boyu ve kiloyu doğru ölçmede istenilen özelliklere sahip büyüme modellerinin seçimini gerektirir. Gereç ve Yöntemler: Bu ihtiyaca cevap vermek için, çocuk gelişimi literatüründe en sıkça kullanılan Logistic ve Gompertz büyüme modellerini farklı parametri-zasyonlarla, ırk ve cinsiyete dayalı olarak, ABD Tennessee Eyaleti, Shelby ilçesinden ''the CANDLE'' çalışması adındaki, anne-çocuk doğum kohortunun verilerini kullanarak karşılaştırdık. Bu birbirine rakip modelleri, farklı parametrizasyonlar altında, her bir antropometrik ölçüm icin (boy, kilo ve baş çevresi), artıkların büyüklüğü ve tahmin standart hatası açısından karşılaştırdık. Ayrıca kayıp gözlemlerin bu modeller üzerindeki etkisini değerlendirdik. Bulgular: Birinci veya ikinci parametresi denek-spesifik rastgele-etki olarak tanımlanan Gompertz modelinin, tahmin doğruluğu açısından en iyi model olduğunu gösterdik. Her bir denek için, rastgele-etki parametresi olmadan kurulan aynı Gompertz modeli de, benzer bir tahmin doğruluğuna sahip olmakla birlikte, beklendiği gibi şişirilmiş standart hata verdiği için, kullanılması tavsiye edilmedi. Sonuç: Sadece birinci veya ikinci parametresi denek-spesifik rastgele-etki olarak tanımlanan Gompertz modelinin, yaşamın ilk dört yılında, boy, kilo ve baş çevresi büyümesi modellemesinde, kayıp gözlem altında bile, en iyi performansı gösterdiği sonucuna vardık.
Anahtar Kelimeler: Büyüme eğrisi; büyüme modelleri; erken çocuk gelişimi; yaşamın ilk yılları; Gompertz; lojistik
- Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11. 2002;(246):1-190.[PubMed]
- Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche AF, Moore WM. Physical growth: National Center for Health Statistics percentiles. Am J Clin Nutr. 1979;32(3):607-29.[Crossref] [PubMed]
- Stuart HC, Meredith HV. Use of body measurements in the school health program; general considerations and the selection of measurements; methods to be followed in taking and interpreting measurements and norms to be used. Am J Public Health Nations Health. 1946;36(12):1365-86.[Crossref] [PubMed] [PMC]
- Owen GM. The new National Center for Health Statistics growth charts. South Med J. 1978;71(3):296-7.[Crossref] [PubMed]
- Owen GM. The assessment and recording of measurements of growth of children: report of a small conference. Pediatrics. 1973;51(3):461-6.[PubMed]
- Comparison of body weights and lengths or heights of groups of children. Nutr Rev. 1974;32(9):284-8.[Crossref] [PubMed]
- Roche AF. Physical growth of ethnic groups comprising the US population. Am J Dis Child. 1976;130(1):62-4.[Crossref] [PubMed]
- Öztürk A, Borlu A, Çiçek B, Altunay C, Ünalan D, Horoz D, et al. [Growth charts for 0-18 year old children and adolescents]. Turk J Fam Pract. 2011;15(3):112-29.[Link]
- Dibley MJ, Goldsby JB, Staehling NW, Trowbridge FL. Development of normalized curves for the international growth reference: historical and technical considerations. Am J Clin Nutr. 1987;46(5):736-48.[Crossref] [PubMed]
- Dibley MJ, Staehling N, Nieburg P, Trowbridge FL. Interpretation of Z-score anthropometric indicators derived from the international growth reference. Am J Clin Nutr. 1987;46(5):749-62.[Crossref] [PubMed]
- Graitcer PL, Gentry EM. Measuring children: one reference for all. Lancet. 1981;2(8241):297-9.[Crossref] [PubMed]
- Sullivan K, Trowbridge F, Gorstein J, Pradilla A. Growth references. Lancet. 1991;337(8754):1420-1.[Crossref] [PubMed]
- Waterlow JC, Buzina R, Keller W, Lane JM, Nichaman MZ, Tanner JM. The presentation and use of height and weight data for comparing the nutritional status of groups of children under the age of 10 years. Bull World Health Organ. 1977;55(4):489-98.[PubMed] [PMC]
- Kaps M, Herring WO, Lamberson WR. Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle. J Anim Sci. 2000;78(6):1436-42.[Crossref] [PubMed]
- Fabens AJ. Properties and fitting of the Von Bertalanffy growth curve. Growth. 1965;29(3):265-89.[PubMed]
- Hubbert MK. Exponential growth as a transient phenomenon in human history. In: Daly HE, Townsend KN, eds. Valuing the Earth: Economics, Ecology, Ethics. Cambridge, Mass: MIT Press; 1993. p.113-26.[Link]
- Karkach AS. Trajectories and models of individual growth. Demographic Research. 2006;15:347-400.[Crossref]
- Winsor CP. The gompertz curve as a growth curve. Proc Natl Acad Sci U S A. 1932;18(1):1-8.[Crossref] [PubMed] [PMC]
- Lindstrom ML, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics. 1990;46(3):673-87.[Crossref] [PubMed]
- Kocak M. Statistical comparison of growth curve models in first years of life in USA and Turkish pediatric populations. Ped Health Res. 2017;2(2):1-6.[Crossref]
- Völgyi E, Carroll KN, Hare ME, Ringwald-Smith K, Piyathilake C, Yoo W, et al. Dietary patterns in pregnancy and effects on nutrient intake in the Mid-South: the Conditions Affecting Neurocognitive Development and Learning in Early Childhood (CANDLE) study. Nutrients. 2013;5(5):1511-30.[Crossref] [PubMed] [PMC]
- Tylavsky FA, Kocak M, Murphy LE, Graff JC, Palmer FB, Völgyi E, et al. Gestational vitamin 25(oh)d status as a risk factor for receptive language development: A 24-month, longitudinal, observational study. Nutrients. 2015;7(12):9918-30.[Crossref] [PubMed] [PMC]
- Palmer FB, Anand KJ, Graff JC, Murphy LE, Qu Y, Völgyi E, et al. Early adversity, socioemotional development, and stress in urban 1-year-old children. J Pediatr. 2013;163(6):1733-9.[Crossref] [PubMed]
.: Process List