Amaç: Bu çalışmada, diyabetik retinopati (DR) şiddetinin makular ödemi olmayan ve tedavi almamış diyabetik hastalarda, retina sinir lifi tabakası (RSLT) ve ganglion hücre tabakası (GHT) kalınlıkları üzerine etkisinin incelenmesi amaçlanmıştır. Gereç ve Yöntemler: Bu çalışmada, DR'si olmayan 30 diabetes mellitus (DM) hastası, 20 hafif nonproliferatif DR (NPDR) hastası, 17 orta NPDR hastası, 16 ağır NPDR hastası, 29 proliferatif DR (PDR) hastası ile 33 sağlıklı kontrol incelendi. Optik koherens tomografi ile iç retinal katmanların kalınlık analizi yapıldı. Diyabetik hastaların serum hemoglobin A1c (HbA1c) düzeyleri ile DM hastalık süreleri kaydedildi. Bulgular: GHT kalınlıkları açısından çalışma grupları arasında istatistiksel anlamlı bir fark saptanmadı (p˃0,05). PDR grubunda foveal, parafoveal ve perifoveal RSLT kalınlığı kontrol, DM ve hafif NPDR grubuna göre artmış saptandı (tümü için p˂0,01). Hastaların görme keskinliği düzeyleri ile foveal RSLT (β=-0,356, p=0,004) ve perifoveal RSLT (β=-0,498, p=0,001) kalınlıkları arasında istatistiksel olarak anlamlı negatif korelasyonlar saptandı. Ayrıca serum HbA1c düzeyleri ile parafoveal ve perifoveal RSLT kalınlıkları arasında istatistiksel olarak anlamlı pozitif korelasyonlar saptandı (sırası ile β=0,308, p=0,002 ve β=0,332, p=0,001). Sonuç: PDR hastalarında istatistiksel olarak anlamlı düzeyde artış gösteren makular RSLT kalınlığının, retinal iskemi ile indüklenen retinal inflamasyon ile ilişkili olabileceği düşünülmektedir. Ayrıca artmış makular RSLT kalınlığının, diyabetik hastalarda görme keskinliği kaybı ile korele olduğu saptanmıştır.
Anahtar Kelimeler: Diyabetik retinopati; ganglion hücre tabakası; optik koherens tomografi; retina sinir lifi tabakası; Tip 2 diabetes mellitus
Objective: To investigate the effect of diabetic retinopathy (DR) severity on retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thicknesses in treatment-naive diabetic patients who do not have any sign of macular edema. Material and Methods: This study enrolled 30 diabetic patients without DR, 20 patients with mild non-proliferative DR (NPDR), 17 patients with moderate NPDR, 16 patients with severe NPDR, 29 patients with proliferative DR (PDR), and 33 healthy control subjects. Optical coherence tomography was performed to analyze inner retinal layer thicknesses. Serum hemoglobin A1c (HbA1c) levels and diabetes mellitus (DM) duration of diabetic patients were recorded. Results: There was no statistically significant difference in GCL thicknesses between the study groups (p˃0.05). The thicknesses of foveal, parafoveal, and perifoveal RNFL were statistically significantly higher in the PDR group compared to the control, DM, and mild NPDR groups (p˂0.01 for all). There were statistically significant negative correlations between the foveal RNFL (β=-0.356, p=0.004) and perifoveal RNFL (β=-0.498, p=0.001) thicknesses with the visual acuity of patients. Additionally, there were statistically significant positive correlations between the serum HbA1c levels with parafoveal and perifoveal RNFL thicknesses (β=0.308, p=0.002 and β=0.332, p=0.001; respectively). Conclusion: Increased macular RNFL thickness in patients with PDR which was statistically significant may be associated with retinal inflammation induced by retinal ischemia. Additionally, a correlation between increased macular RNFL thickness and visual acuity loss was detected in diabetic patients.
Keywords: Diabetic retinopathy; ganglion cell layer; optical coherence tomography; retinal nerve fiber layer; Type 2 diabetes mellitus
- Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40-50. [Crossref] [PubMed]
- Lutty GA. Effects of diabetes on the eye. Invest Ophthalmol Vis Sci. 2013;54(14): ORSF 81-7. [Crossref] [PubMed] [PMC]
- Kern TS, Barber AJ. Retinal ganglion cells in diabetes. J Physiol. 2008;586(18):4401-8. [Crossref] [PubMed] [PMC]
- Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783-91. [Crossref] [PubMed] [PMC]
- Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655-64. [Crossref] [PubMed] [PMC]
- Lee J, Bosen RB. Learning to read retinal OCT. Ophthalmology Management. 2015;19: 4446-8. [Link]
- Staurenghi G, Sadda S, Chakravarthy U, Spaide RF; International Nomenclature for Optical Coherence Tomography (IN?OCT) Panel. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the INOCT consensus. Ophthalmology. 2014; 121(8):1572-8. [Crossref] [PubMed]
- Saxena S, Srivastav K, Akduman L. Spectral domain optical coherence tomography alterations in macular thickness and inner segment ellipsoid are associated with severity of diabetic retinopathy. Int J Ophthalmol Clin Res. 2015;2(1):1-5. [Crossref]
- Soliman AZ, Radwan SH, Prager SG, Kwak H, Silva PS, Aiello LP, et al. Spectral domain optical coherence tomography parameters associated with visual acuity in patients with resolved center-involved diabetic macular edema. Invest Ophthalmol Vis Sci. 2012; 53(3):14. [Link]
- Sun JK, Lin MM, Lammer J, Prager S, Sarangi R, Silva PS, et al. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014;132(11): 1309-16. [Crossref] [PubMed]
- Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786-806. [Crossref] [PubMed]
- Lorenzi M, Gerhardinger C. Early cellular and molecular changes induced by diabetes in the retina. Diabetologia. 2001;44(7):791-804. [Crossref] [PubMed]
- Lieth E, Gardner TW, Barber AJ, Antonetti DA; Penn State Retina Research Group. Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol. 2000;28(1):3-8. [Crossref] [PubMed]
- Gastinger MJ, Kunselman AR, Conboy EE, Bronson SK, Barber AJ. Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Invest Ophthalmol Vis Sci. 2008;49(6):2635-42. [Crossref] [PubMed]
- Gastinger MJ, Singh RS, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci. 2006;47(7):3143-50. [Crossref] [PubMed]
- Meyer-Rüsenberg B, Pavlidis M, Stupp T, Thanos S. Pathological changes in human retinal ganglion cells associated with diabetic and hypertensive retinopathy. Graefes Arch Clin Exp Ophthalmol. 2007;245(7):1009-18. [Crossref] [PubMed]
- Barber AJ, Baccouche B. Neurodegeneration in diabetic retinopathy: Potential for novel therapies. Vision Res. 2017;139:82-92. [Crossref] [PubMed]
- van Dijk HW, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vision Res. 2011;51(2):224-8. [Crossref] [PubMed] [PMC]
- El-Fayoumi D, Badr Eldine NM, Esmael AF, Ghalwash D, Soliman HM. Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with Type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci. 2016;57(13):5355-60. [Crossref] [PubMed]
- El-Hifnawy MAM, Kareem M, Sabry KM, Gomaa AR, Hassan TA. Effect of diabetic retinopathy on retinal nerve fiber layer thickness. Delta J of Ophthalmol. 2016;17(3):162-6. [Crossref]
- Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol. 2002; 86(4):363-5. [Crossref] [PubMed] [PMC]
- Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, et al. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol. 2009;175(6):2676-85. [Crossref] [PubMed] [PMC]
- He P. Leucocyte/endothelium interactions and microvessel permeability: coupled or uncoupled? Cardiovasc Res. 2010;87(2):281-90. [Crossref] [PubMed] [PMC]
- Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol. 1997;151(3):707-14. [PubMed] [PMC]
- Aouiss A, Anka Idrissi D, Kabine M, Zaid Y. Update of inflammatory proliferative retinopathy: Ischemia, hypoxia and angiogenesis. Curr Res Transl Med. 2019;67(2):62-71. [Crossref] [PubMed]
- Brito PN, Rosas VM, Coentrão LM, Carneiro ÂV, Rocha-Sousa A, Brandão E, et al. Evaluation of visual acuity, macular status, and subfoveal choroidal thickness changes after cata ract surgery in eyes with diabetic retinopathy. Retina. 2015;35(2):294-302. [Crossref] [PubMed]
- Kim JJ, Im JC, Shin JP, Kim IT, Park DH. One-year follow-up of macular ganglion cell layer and peripapillary retinal nerve fibre layer thickness changes after panretinal photocoagulation. Br J Ophthalmol. 2014;98(2):213-7. [Crossref] [PubMed]
- Zheng L, Kern TS. In vivo animal models of diabetic retinopathy. Experimental Approaches to Diabetic Retinopathy. 2010;20:42-60. [Crossref]
- Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450-2. [Crossref] [PubMed]
- Diyabetik retinopati. Özdemir H, Arf S, Karaçorlu M. Maküla Hastalıklarında Optik Koherens Tomografi. Ankara: Güneş Tıp Kita bevi; 2015. p. 51-77.
- Moss SE, Klein R, Klein BE. Ten-year incidence of visual loss in a diabetic population. Ophthalmology. 1994;101(6):1061-70. [Crossref] [PubMed]
- Moss SE, Klein R, Klein BE. The 14-year incidence of visual loss in a diabetic population. Ophthalmology. 1998;105(6):998-1003. [Crossref] [PubMed]
.: Process List