Objective: This study aims to determine the relationship between nursing students' general attitudes toward artificial intelligence, literacy, and anxiety levels. Material and Methods: The study was conducted using a descriptive-correlation-seeking design. The sample consisted of 414 nursing students at a state university. The ''Personal Information Form'', ''General Attitude Towards Artificial Intelligence Scale (GAAIS)'', ''Artificial Intelligence Anxiety Scale (AIAS)'', and ''Artificial Intelligence Literacy Scale (AILS)'' were used as data collection tools. Results: The mean age of the students was 21.07±1.84 years; the majority were female (72.7%) and in their first year of education (30.9%). While 44.4% of the students' mothers and 44.0% of their fathers completed primary school 89.6% of the students' mothers were not working, and 78.7% of the students' fathers were working. The mean total scores of the students in the GAAIS, AIAS, and AILS were 65.87±9.42, 49.20±9.24 and 43.04±6.53, respectively. It was found that there was a statistically significant relationship between the GAAIS and the AIAS in a negative direction and a positive direction with the AILS (p=0.001). Conclusion: It was determined that students' general attitudes towards artificial intelligence and artificial intelligence literacy were high, and their artificial intelligence anxiety was at a medium level. Adding courses on artificial intelligence to all students at the university level will help them gain more knowledge about technological innovations and ensure awareness, which will help reduce anxiety levels while strengthening their literacy and general attitudes.
Keywords: Nursing student; anxiety; literacy; artificial intelligence
Amaç: Bu çalışmanın amacı hemşirelik öğrencilerinin yapay zekâya yönelik genel tutumları ile okuryazarlık ve kaygı düzeyleri arasındaki ilişkiyi belirlemektir. Gereç ve Yöntemler: Çalışma tanımlayıcı-korelasyon arayıcı desen kullanılarak yürütülmüştür. Örneklem, bir devlet üniversitesinde öğrenim gören 414 hemşirelik öğrencisinden oluşmaktadır. Veri toplama aracı olarak ''Kişisel Bilgi Formu'', ''Yapay Zekâya Yönelik Genel Tutum Ölçeği [General Attitude Towards Artificial Intelligence Scale (GAAIS)]'', ''Yapay Zekâ Kaygı Ölçeği [Artificial Intelligence Anxiety Scale (AIAS)]'' ve ''Yapay Zekâ Okuryazarlık Ölçeği [Artificial Intelligence Literacy Scale (AILS)]'' kullanılmıştır. Bulgular: Öğrencilerin yaş ortalaması 21,07±1,84 yıl olup, çoğunluğu kadın (%72,7) ve eğitimlerinin ilk yılında (%30,9) idi. Öğrencilerin annelerinin %44,4'ü, babalarının ise %44,0'ı ilkokulu tamamlarken, öğrencilerin annelerinin %89,6'sı çalışmamakta, babalarının ise %78,7'si çalışmaktadır. Öğrencilerin GAAIS, AIAS ve AILS toplam puan ortalamaları sırasıyla 65,87±9,42, 49,20±9,24 ve 43,04±6,53'tür. GAAIS ile AIAS arasında negatif yönde, AILS ile pozitif yönde istatistiksel olarak anlamlı bir ilişki olduğu tespit edilmiştir (p=0,001). Sonuç: Öğrencilerin yapay zekâya yönelik genel tutumlarının ve yapay zekâ okuryazarlıklarının yüksek olduğu, yapay zekâ kaygılarının ise orta düzeyde olduğu tespit edilmiştir. Üniversite düzeyinde tüm öğrencilere yapay zekâ ile ilgili derslerin eklenmesi, teknolojik yenilikler hakkında daha fazla bilgi sahibi olmalarına ve farkındalık sağlamalarına katkıda bulunabilir, bu da okuryazarlıklarını ve genel tutumlarını güçlendirirken kaygı düzeylerini azaltmaya yardımcı olabilir.
Anahtar Kelimeler: Hemşirelik öğrencileri; anksiyete; okuryazarlık; yapay zekâ
- Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke and vascular neurology. 2017;2:e000101. [Crossref]
- Shang Z. A concept analysis on the use of artificial intelligence in nursing. Cureus. 2021;13(5):e14857. [Crossref] [PubMed] [PMC]
- Gao F, Jia X, Zhao Z, Chen CC, Xu F, Geng Z, et al. Bibliometric analysis on tendency and topics of artificial intelligence over last decade. Microsystem Technologies. 2021:27:1545-57. [Crossref]
- Merone L, Tsey K, Russell D, Daltry A, Nagle C. Evidence-based medicine: feminist criticisms and implications for women's health. Womens Health Rep (New Rochelle). 2022;3(1):844-9. [PubMed] [PMC]
- Ronquillo CE, Peltonen LM, Pruinelli L, Chu CH, Bakken S, Beduschi A, et al. Artificial intelligence in nursing: priorities and opportunities from an international invitational think-tank of the nursing and artificial intelligence leadership collaborative. J Adv Nurs. 2021;77(9):3707-17. [PubMed] [PMC]
- World Health Organization [Internet]. State of the world?s nursing 2020: Investing in education, jobs and leadership. ©2025 WHO [Cited: July 10, 2024] Available from: [Link]
- Ng ZQP, Ling LYJ, Chew HSJ, Lau Y. The role of artificial intelligence in enhancing clinical nursing care: A scoping review. J Nurs Manag. 2022;30(8):3654-74. [PubMed]
- Akgerman A, Özdemir Yavuz ED, Kavaslar İ, Güngör S. Yapay zekâ ve hemşirelik [Artificial intelligence and nursing]. Sağlık Bilimlerinde Yapay Zeka Dergisi. 2022;2(1):21-7 [Crossref]
- Robert N. How artificial intelligence is changing nursing. Nurs Manage. 2019;50(9):30-9. [Crossref] [PubMed] [PMC]
- Pepito JA, Locsin R. Can nurses remain relevant in a technologically advanced future? Int J Nurs Sci. 2018;6(1):106-10. [Crossref] [PubMed] [PMC]
- Gombolay M, Yang XJ, Hayes B, Seo N, Liu Z, Wadhwania S, et al. Robotic assistance in the coordination of patient care. The International Journal of Robotics Research. 2018;37(10):1300-16. 364918 778344 [Crossref]
- Topaz M, Woo K, Ryvicker M, Zolnoori M, Cato K. Home healthcare clinical notes predict patient hospitalization and emergency department visits. Nurs Res. 2020;69(6):448-54. [Crossref] [PubMed] [PMC]
- Kaya F, Aydin F, Schepman A, Rodway P, Yetişensoy O, Demir Kaya M. The roles of personality traits, AI anxiety, and demographic factors in attitudes toward artificial intelligence. International Journal of Human-Computer Interaction. 2024;40(2): 497-514. [Crossref] [PubMed]
- Plaks JE, Rodriguez LB, Ayad R. Identifying psychological features of robots that encourage and discourage trust. Comput. Hum. Behav. 2022;134:107301. [Crossref]
- Watson D, Womack J, Papadakos S. Rise of the robots: is artificial intelligence a friend or foe to nursing practice? Crit Care Nurs Q. 2020;43(3):303-11. [PubMed]
- Schepman A, Rodway P. Initial validation of the general attitudes towards artificial intelligence scale. Comput Hum Behav Rep. 2020;1:100014. [PubMed] [PMC]
- Wang YY, Wang YS. Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments. 2022;30(4):619-34. [Crossref]
- Akkaya B, Özkan A, Özkan H. Yapay zeka kaygı (YZK) ölçeği: Türkçeye uyarlama, geçerlik ve güvenirlik çalışması [Artificial intelligence anxiety (AIA) scale: adaptation to Turkish, validity and reliability study]. Alanya Academic Review Journal. 2021;5:1125-46. [Crossref]
- Wang B, Rau PLP, Yuan T. Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour&information technology. 2023;42:1324-37. [Crossref]
- Polatgil M, Güler A. Yapay Zekâ Okuryazarlığı Ölçeğinin Türkçe?ye Uyarlanması [Adaptation of Artificial Intelligence Literacy Scale into Turkish]. Sosyal Bilimlerde Nicel Araştırmalar Dergisi. 2023;3:99-114. [Link]
- Tabachnick BG, Fidell LS. Using multivariate statistics. 6th ed. Boston, MA: Pearson Education; 2012/2013. ISBN-10: 0-205-89081-4
- Çifci BS, Şahin Başfırıncı Ç. Yapay zekâ konusunun toplumsal cinsiyet kapsamında incelenmesi: mesleklere yönelik bir araştırma [An investigation of artificial intelligence in the scope of gender: a research on professions]. Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 2020;29:183-203. [Link]
- Dai Y, Chai CS, Lin PY, Jong MSY, Guo Y, Qin J. Promoting students? well-being by developing their readiness for the artificial intelligence age. Sustainability. 2020;12:6597. [Crossref]
- Üzüm B, Özkurt Sivrikaya S. Meslek yüksekokulu öğrencilerinin etik değerlere yatkınlık düzeyleri (Kocaeli myo örneği) [Inclination of ethical values of vocational students (Kocaeli vocational school sample)]. IBAD. 2018;3:230-40. http=//dx. [Crossref]
- Urbano R. Estrategias para proteger a los niños de la violencia en la inteligencia artificial. Rotura-Revista de Comunicação, Cultura e Artes. 2024;4(1):40-9. [Crossref]
- Biswas M, Murray J. How Education and Tech Savvy Perception Shape AI Interactions. 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN); 2024 August 26-30; Pasadena; CA; USA. IEEE; 2024. p. 985-90. [Crossref]
- Yasin MI. Attitudes towards artificial intelligence, anxiety and openness to experience. Izvestiya of Saratov University Philosophy Psychology Pedagogy. 2022;22(4):449-53. [Crossref]
- Presbitero A, Teng-Calleja M. Job attitudes and career behaviors relating to employees? perceived incorporation of artificial intelligence in the workplace: a career self-management perspective. Personnel Review. 2023;52(6):1169-87. [Crossref]
- Ranbhise N, Rathod S, Talsandekar A. A correlational study on knowledge and attitude regarding artificial intelligence in health care among nursing students of D.Y. Patil college of nursing, Kolhapur, Maharashtra. International Journal of Multidisciplinary Research (IJMR). 2023;5(4):1-8. [Link]
- Chang S, Kim Y. Exploratory study on the readiness of nursing students to use artificial intelligence. Open Education Research. 2023;31(3):71-91. [Crossref]
- Chai CS, Wang X, Xu C. An extended theory of planned behavior for the modelling of Chinese secondary school students? intention to learn artificial intelligence. Mathematics. 2020;8(11):2089. [Crossref]
.: Process List