Objective: To characterize the alterations in the vasculature of the retina and choroid in eyes with exfoliation glaucoma (XFG) with the enhanced depth imaging (EDI) modality of an optical coherence tomography (OCT) and OCT angiography (OCTA). Material and Methods: In this cross-sectional observational study, the choroidal vascularity index (CVI) values were assessed with EDI OCT and macula vessel density (VD) in the superficial capillary plexus (SCP) values were assessed with OCTA compared among 35 XFG cases (15 eyes with early stage and 20 eyes with moderate to advanced stage) and 32 healthy controls, which were age and sex matched. Results: The eyes with XFG had significantly lower global (whole image) macula VDs compared with the control eyes (p<0.001). The eyes with moderate to advanced stage XFG had also lower mean CVI values compared with the control eyes (p=0.01). The mean CVI values of the XFG eyes had a moderate correlation with the visual field MD values (r=0.398, p=0.01), while choroidal thickness values of the XFG eyes did not demonstrate such an association with the visual field MD values (r=0.035, p=0.84). Mean macula VD values in the SCP demonstrated a strong correlation with the visual field MD values (r=0.698, p<0.00001). Conclusion: The lower CVI and macula VD of XFG eyes compared with healthy controls and its significant correlation with the severity of glaucoma imply the role of retinal and choroidal vascularity in XFG pathogenesis.
Keywords: Choroidal vascularity index; enhanced depth imaging; optical coherence tomography angiography; vessel density
Amaç: Bu çalışmanın amacı, eksfoliasyon glokomlu (EG) gözlerde retina ve koroid vaskülaritesindeki değişiklikleri, optik koherens tomografi (OKT) artırılmış derinlik görüntüleme (ADG) modu ve OKT anjiyografisi (OKTA) ile karakterize etmektir. Gereç ve Yöntemler: Bu kesitsel gözlemsel çalışmada, koroid vaskülarite indeksi (KVİ) ADG mod OKT ile ve makula yüzeyel kapiller pleksus (YKP) damar dansitesi (DD) OKTA ile değerlendirildi; EG vakaları (n=35, 15 erken evre göz ve 20 orta ileri evre göz) ile yaş-cinsiyet uyumlu sağlıklı kontrol grubu (n=32) arasında karşılaştırıldı. Bulgular: EG'li gözlerde, kontrol grubuna göre daha düşük global makula DD değerleri saptandı (p<0,001). Ayrıca orta ileri evre EG'li gözlerde, kontrol grubuna göre daha düşük ortalama KVİ değerleri saptandı (p=0,01). EG'li gözlerin ortalama KVİ değeri, görme alanı ortalama sapma değeri ile orta derecede korelasyon gösterirken (r=0,398, p=0,01); ortalama koroid kalınlığı değeri, görme alanı ortalama sapma değeri ile anlamlı korelasyon göstermedi (r=0,035, p=0,84). Makuladaki ortalama YKP DD değeri ise görme alanı ortalama sapma değeri ile güçlü bir korelasyon gösterdi (r=0,698, p<0,00001). Sonuç: Sağlıklı kontrollerle karşılaştırıldığında EG'li gözlerin düşük KVİ ve makula DD'sine sahip olması ve bunların glokomun şiddeti ile anlamlı derecede korele olması, EG patogenezinde retinal ve koroidal vaskülaritenin rolüne işaret etmektedir.
Anahtar Kelimeler: Koroid vaskülarite indeksi; artırılmış derinlik görüntüleme; optik koherens tomografi anjiyografi; damar dansitesi
- Yıldırım N. Psödoeksfoliyatif glokom [Pseudoexfoliative glaucoma]. Glo-Kat. 2011;6:54-9. [Link]
- Ritch R. Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma. 1994;3(2):176-7. [Crossref] [PubMed]
- Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol. 2001;45(4):265-315. [Crossref] [PubMed]
- De Moraes CG, Liebmann JM, Liebmann CA, Susanna R Jr, Tello C, Ritch R. Visual field progression outcomes in glaucoma subtypes. Acta Ophthalmol. 2013;91(3):288-93. [Crossref] [PubMed]
- Galassi F, Giambene B, Menchini U. Ocular perfusion pressure and retrobulbar haemodynamics in pseudoexfoliative glaucoma. Graefes Arch Clin Exp Ophthalmol. 2008;246(3):411-6. [Crossref] [PubMed]
- Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN. Optical coherence tomography angiography in glaucoma. J Glaucoma. 2020;29(4):312-21. [Crossref] [PubMed] [PMC]
- Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol. 2014;252(12):1871-83. [Crossref] [PubMed]
- Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090. [Crossref] [PubMed] [PMC]
- Philip S, Najafi A, Tantraworasin A, Chui TYP, Rosen RB, Ritch R. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(4):1244-53. [Crossref] [PubMed] [PMC]
- Subasi S, Yuksel N, Basaran E, Pirhan D. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA. Int Ophthalmol. 2021;41(1):173-84. [Crossref] [PubMed]
- Park Y, Cho KJ. Choroidal vascular index in patients with open angle glaucoma and preperimetric glaucoma. PLoS One. 2019;14(3): e0213336. [Crossref] [PubMed] [PMC]
- Park JW, Suh MH, Agrawal R, Khandelwal N. Peripapillary choroidal vascularity index in glaucoma-a comparison between spectral-domain OCT and OCT angiography. Invest Ophthalmol Vis Sci. 2018;59(8):3694-701. [Crossref] [PubMed]
- Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300(1):5-25. [Crossref] [PubMed]
- Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1-21. [Crossref] [PubMed] [PMC]
- Michelson G, Langhans MJ, Harazny J, Dichtl A. Visual field defect and perfusion of the juxtapapillary retina and the neuroretinal rim area in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1998;236(2):80-5. [Crossref] [PubMed]
- O'Brart DP, de Souza Lima M, Bartsch DU, Freeman W, Weinreb RN. Indocyanine green angiography of the peripapillary region in glaucomatous eyes by confocal scanning laser ophthalmoscopy. Am J Ophthalmol. 1997;123(5):657-66. [Crossref] [PubMed]
- Huber K, Plange N, Remky A, Arend O. Comparison of colour Doppler imaging and retinal scanning laser fluorescein angiography in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand. 2004;82(4):426-31. [Crossref] [PubMed]
- Tobe LA, Harris A, Hussain RM, Eckert G, Huck A, Park J, et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015;99(5):609-12. [Crossref] [PubMed]
- Aghsaei Fard M, Safizadeh M, Shaabani A, Kafieh R, Hojati S, Afzali M, et al. Automated evaluation of parapapillary choroidal microvasculature in pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Am J Ophthalmol. 2021;224:178-84. [Crossref] [PubMed]
- Eroglu FC, Asena L, Simsek C, Kal A, Yılmaz G. Evaluation of choroidal thickness using enhanced depth imaging by spectral-domain optical coherence tomography in patients with pseudoexfoliation syndrome. Eye (Lond). 2015;29(6):791-6. [Crossref] [PubMed] [PMC]
- Gür Güngör S, Sarigül Sezenöz A, Öztürk C, Gökgöz G, Akman A. Peripapillary and macular vessel density measurement with optical coherence tomography angiography in exfoliation syndrome. J Glaucoma. 2021;30(1):71-7. [Crossref] [PubMed]
- Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799-821. [Crossref] [PubMed]
- Campbell JP, Zhang M, Hwang TS, Bailey ST, Wilson DJ, Jia Y, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. [Crossref] [PubMed] [PMC]
- Jo YH, Sung KR, Shin JW. Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open-angle glaucoma. J Glaucoma. 2020;29(5):381-5. [Crossref] [PubMed]
- Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496-500. Erratum in: Am J Ophthalmol. 2009;148(2):325. Pozonni, Maria C [corrected to Pozzoni, Maria C]. [Crossref] [PubMed]
- Zhang Z, Yu M, Wang F, Dai Y, Wu Z. Choroidal thickness and open-angle glaucoma: a meta-analysis and systematic review. J Glaucoma. 2016;25(5):e446-54. [Crossref] [PubMed]
- Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Uchino E, Terasaki H, et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci. 2014;55(6):3893-9. Erratum in: Invest Ophthalmol Vis Sci. 2014;55(8):4811-2. [Crossref] [PubMed]
- Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159(6):1123-31.e1. [Crossref] [PubMed]
- Agrawal R, Salman M, Tan KA, Karampelas M, Sim DA, Keane PA, et al. Choroidal Vascularity Index (CVI)--a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS One. 2016;11(1):e0146344. [Crossref] [PubMed] [PMC]
- Maul EA, Friedman DS, Chang DS, Boland MV, Ramulu PY, Jampel HD, et al. Choroidal thickness measured by spectral domain optical coherence tomography: factors affecting thickness in glaucoma patients. Ophthalmology. 2011;118(8):1571-9. [Crossref] [PubMed] [PMC]
.: Process List